Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Na3(VO)2(PO4)2F.

Zeitschriftenartikel zum Thema „Na3(VO)2(PO4)2F“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-17 Zeitschriftenartikel für die Forschung zum Thema "Na3(VO)2(PO4)2F" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Lin, Zhi. „Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x“. Crystals 14, Nr. 1 (28.12.2023): 43. http://dx.doi.org/10.3390/cryst14010043.

Der volle Inhalt der Quelle
Annotation:
Renewable electricity products, for example, from wind and photovoltaic energy, need large-scale and economic energy storage systems to guarantee the requirements of our daily lives. Sodium-ion batteries are considered more economical than lithium-ion batteries in this area. Na3V2(PO4)2F3, NaVPO4F, and Na3(VO)2(PO4)2F are one type of material that may be used for Na-ion batteries. In order to better understand the synthesis of these materials, the phase formation in a NaH2PO4–VOSO4–NaF–H2O system under hydrothermal conditions was studied and is reported herein. This research focused on the influences of the sodium fluoride content and hydrothermal crystallization time on phase formation and phase purity. The phase transformation between Na(VO)2(PO4)2(H2O)4 and Na3V2O2x(PO4)2F3-2x was also studied. Na3V2O2x(PO4)2F3-2x with a high degree of crystallinity can be obtained in as short as 2 h via hydrothermal synthesis using a conventional oven at 170 °C without agitation. All compounds obtained in this research were studied mainly using powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, and Fourier-transform infrared spectroscopy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nguyen, Long H. B., Thibault Broux, Paula Sanz Camacho, Dominique Denux, Lydie Bourgeois, Stéphanie Belin, Antonella Iadecola et al. „Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution“. Energy Storage Materials 20 (Juli 2019): 324–34. http://dx.doi.org/10.1016/j.ensm.2019.04.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yin, Yameng, Cunyuan Pei, Fangyu Xiong, Yi Pan, Xiaoming Xu, Bo Wen und Qinyou An. „Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties“. Journal of Materials Science & Technology 83 (August 2021): 83–89. http://dx.doi.org/10.1016/j.jmst.2020.11.075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Serras, Paula, Verónica Palomares, Pierre Kubiak, Luis Lezama und Teófilo Rojo. „Enhanced electrochemical performance of vanadyl (IV) Na3(VO)2(PO4)2F by ex-situ carbon coating“. Electrochemistry Communications 34 (September 2013): 344–47. http://dx.doi.org/10.1016/j.elecom.2013.07.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Xing, Siyang, Yujuan Cheng, Fei Yu und Jie Ma. „Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity“. Journal of Colloid and Interface Science 598 (September 2021): 511–18. http://dx.doi.org/10.1016/j.jcis.2021.04.051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nguyen, Long H. B., Jacob Olchowka, Stéphanie Belin, Paula Sanz Camacho, Mathieu Duttine, Antonella Iadecola, François Fauth, Dany Carlier, Christian Masquelier und Laurence Croguennec. „Monitoring the Crystal Structure and the Electrochemical Properties of Na3(VO)2(PO4)2F through Fe3+ Substitution“. ACS Applied Materials & Interfaces 11, Nr. 42 (27.09.2019): 38808–18. http://dx.doi.org/10.1021/acsami.9b14249.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Deng, Gang, Dongliang Chao, Yuwei Guo, Zhen Chen, Huanhuan Wang, Serguei V. Savilov, Jianyi Lin und Ze Xiang Shen. „Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery“. Energy Storage Materials 5 (Oktober 2016): 198–204. http://dx.doi.org/10.1016/j.ensm.2016.07.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bi, Xueli, Yaqi Peng, Shanshan Liu, Ye Liu, Xin Yang, Kai Feng und Jianjiang Hu. „Na3(VO)2(PO4)2F coated carbon nanotubes: A cathode material with high-specific capacity for aqueous zinc-ion batteries“. Electrochimica Acta 475 (Januar 2024): 143657. http://dx.doi.org/10.1016/j.electacta.2023.143657.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hu, Qiao, Guangming Han, Jiaying Liao und Jianfeng Yao. „Boosting sodium-ion battery performance using Na3(VO)2(PO4)2F microrods self-embedded in a 3D conductive interpenetrated framework“. Journal of Alloys and Compounds 988 (Juni 2024): 174261. http://dx.doi.org/10.1016/j.jallcom.2024.174261.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yang, Xiaoqiang, Meijing Wang, Xingde Xiang, Song Liu und Chunxia Chen. „An open-system synthesis approach to achieve high-rate Na3(VO)2(PO4)2F/C microcubes cathode for sodium-ion batteries“. Journal of Electroanalytical Chemistry 956 (März 2024): 118088. http://dx.doi.org/10.1016/j.jelechem.2024.118088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Qiu, Ruyun, Rixin Fei, Jin-Zhi Guo, Rui Wang, Beibei He, Yansheng Gong, Xing-Long Wu und Huanwen Wang. „Encapsulation of Na3(VO)2(PO4)2F into carbon nanofiber as an superior cathode material for flexible sodium-ion capacitors with high-energy-density and low-self-discharge“. Journal of Power Sources 466 (August 2020): 228249. http://dx.doi.org/10.1016/j.jpowsour.2020.228249.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Xiang, Xingde, Qiongqiong Lu, Mo Han und Jun Chen. „Superior high-rate capability of Na3(VO0.5)2(PO4)2F2 nanoparticles embedded in porous graphene through the pseudocapacitive effect“. Chemical Communications 52, Nr. 18 (2016): 3653–56. http://dx.doi.org/10.1039/c6cc00065g.

Der volle Inhalt der Quelle
Annotation:
Na3(VO0.5)2(PO4)2F2 nanoparticles embedded in porous graphene as the cathode material for sodium-ion batteries can show superior high-rate capability through the pseudocapacitive effect.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Morais, William Gomes de, Eduardo Carmine de Melo und Roberto Manuel M. Torresi. „Mechanochemical Effect on the Electrochemical Properties of Na3(VO)2(PO4)2F Positive Electrode for Sodium-Ion Batteries“. Materials Advances, 2024. http://dx.doi.org/10.1039/d4ma00106k.

Der volle Inhalt der Quelle
Annotation:
Sodium vanadium fluorophosphate (NVPF) has shown promising properties as a positive electrode in sodium-ion batteries, mainly due to its high operating voltage; however, it presents significant electronic and kinetic limitations...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

„Preparation and Electrochemical Performance of Carbon Coated Na3(VO)2(PO4)2 F“. ECS Meeting Abstracts, 2013. http://dx.doi.org/10.1149/ma2013-02/6/405.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Wei, Qiulong, Qidong Li, Yalong Jiang, Yunlong Zhao, Shuangshuang Tan, Jun Dong, Liqiang Mai und Dong-Liang Peng. „High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode“. Nano-Micro Letters 13, Nr. 1 (08.01.2021). http://dx.doi.org/10.1007/s40820-020-00567-2.

Der volle Inhalt der Quelle
Annotation:
AbstractHigh-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode materials. Herein, we report layered iron vanadate (Fe5V15O39 (OH)9·9H2O) ultrathin nanosheets with a thickness of ~ 2.2 nm (FeVO UNSs) as a novel anode for rapid and reversible sodium-ion storage. According to in situ synchrotron X-ray diffractions and electrochemical analysis, the storage mechanism of FeVO UNSs anode is Na+ intercalation pseudocapacitance under a safe potential window. The FeVO UNSs anode delivers high ICE (93.86%), high reversible capacity (292 mAh g−1), excellent cycling stability, and remarkable rate capability. Furthermore, a pseudocapacitor–battery hybrid SIC (PBH-SIC) consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments. The PBH-SIC involves faradaic reaction on both cathode and anode materials, delivering a high energy density of 126 Wh kg−1 at 91 W kg−1, a high power density of 7.6 kW kg−1 with an energy density of 43 Wh kg−1, and 9000 stable cycles. The tunable vanadate materials with high-performance Na+ intercalation pseudocapacitance provide a direction for developing next-generation high-energy capacitors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Wei, Qiulong, Qidong Li, Yalong Jiang, Yunlong Zhao, Shuangshuang Tan, Jun Dong, Liqiang Mai und Dong-Liang Peng. „High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode“. Nano-Micro Letters 13, Nr. 1 (Januar 2021). http://dx.doi.org/10.1007/s40820-020-00567-2.

Der volle Inhalt der Quelle
Annotation:
AbstractHigh-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode materials. Herein, we report layered iron vanadate (Fe5V15O39 (OH)9·9H2O) ultrathin nanosheets with a thickness of ~ 2.2 nm (FeVO UNSs) as a novel anode for rapid and reversible sodium-ion storage. According to in situ synchrotron X-ray diffractions and electrochemical analysis, the storage mechanism of FeVO UNSs anode is Na+ intercalation pseudocapacitance under a safe potential window. The FeVO UNSs anode delivers high ICE (93.86%), high reversible capacity (292 mAh g−1), excellent cycling stability, and remarkable rate capability. Furthermore, a pseudocapacitor–battery hybrid SIC (PBH-SIC) consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments. The PBH-SIC involves faradaic reaction on both cathode and anode materials, delivering a high energy density of 126 Wh kg−1 at 91 W kg−1, a high power density of 7.6 kW kg−1 with an energy density of 43 Wh kg−1, and 9000 stable cycles. The tunable vanadate materials with high-performance Na+ intercalation pseudocapacitance provide a direction for developing next-generation high-energy capacitors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Yakubovich, Olga Vsevolodovna, Galina Kiriukhina, Sergey Vladimirovich Simonov, Anatoly Volkov und Olga Dimitrova. „Na3(VO)(PO4)(CO3): a synthetic member of the bradleyite phosphate carbonate family with a new type of crystal structure“. CrystEngComm, 2023. http://dx.doi.org/10.1039/d3ce00323j.

Der volle Inhalt der Quelle
Annotation:
The synthesis and characterization of a (VO)2+ representative in the bradleyite family of compounds is reported. The new trisodium vanadyl phosphate carbonate was investigated using scanning electron microscopy, microprobe analysis,...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie