Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Myosine-X“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Myosine-X" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Myosine-X"
Berg, J. S., B. H. Derfler, C. M. Pennisi, D. P. Corey und R. E. Cheney. „Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin“. Journal of Cell Science 113, Nr. 19 (01.10.2000): 3439–51. http://dx.doi.org/10.1242/jcs.113.19.3439.
Der volle Inhalt der QuelleNovakovic, Valerie A., und Gary E. Gilbert. „Procoagulant activities of skeletal and cardiac muscle myosin depend on contaminating phospholipid“. Blood 136, Nr. 21 (19.11.2020): 2469–72. http://dx.doi.org/10.1182/blood.2020005930.
Der volle Inhalt der QuelleRogers, Michael S., und Emanuel E. Strehler. „The Tumor-sensitive Calmodulin-like Protein Is a Specific Light Chain of Human Unconventional Myosin X“. Journal of Biological Chemistry 276, Nr. 15 (22.01.2001): 12182–89. http://dx.doi.org/10.1074/jbc.m010056200.
Der volle Inhalt der QuelleNaydenov, Nayden, Susana Lechuga, Emina Huang und Andrei Ivanov. „Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer“. Cancers 13, Nr. 4 (11.02.2021): 741. http://dx.doi.org/10.3390/cancers13040741.
Der volle Inhalt der QuelleBrown, Lisa D., und Marie E. Cantino. „Immunocytochemical Localization of Myosin Light Chains in the Abdominal Superficial Flexor Muscles of the American Lobster, Homarus Americanus“. Microscopy and Microanalysis 4, S2 (Juli 1998): 1118–19. http://dx.doi.org/10.1017/s143192760002571x.
Der volle Inhalt der QuelleSquire, John. „Special Issue: The Actin-Myosin Interaction in Muscle: Background and Overview“. International Journal of Molecular Sciences 20, Nr. 22 (14.11.2019): 5715. http://dx.doi.org/10.3390/ijms20225715.
Der volle Inhalt der QuelleCourson, David S., und Richard E. Cheney. „Myosin-X and disease“. Experimental Cell Research 334, Nr. 1 (Mai 2015): 10–15. http://dx.doi.org/10.1016/j.yexcr.2015.03.014.
Der volle Inhalt der QuelleDillmann, W. H. „Methyl palmoxirate increases Ca2+-myosin ATPase activity and changes myosin isoenzyme distribution in the diabetic rat heart“. American Journal of Physiology-Endocrinology and Metabolism 248, Nr. 5 (01.05.1985): E602—E606. http://dx.doi.org/10.1152/ajpendo.1985.248.5.e602.
Der volle Inhalt der QuelleAlmagro, Sébastien, Claire Durmort, Adeline Chervin-Pétinot, Stephanie Heyraud, Mathilde Dubois, Olivier Lambert, Camille Maillefaud et al. „The Motor Protein Myosin-X Transports VE-Cadherin along Filopodia To Allow the Formation of Early Endothelial Cell-Cell Contacts“. Molecular and Cellular Biology 30, Nr. 7 (01.02.2010): 1703–17. http://dx.doi.org/10.1128/mcb.01226-09.
Der volle Inhalt der QuelleIkebe, Mitsuo, Osamu Sato und Tsuyoshi Sakai. „Myosin X and Cytoskeletal Reorganization“. Applied Microscopy 48, Nr. 2 (30.06.2018): 33–42. http://dx.doi.org/10.9729/am.2018.48.2.33.
Der volle Inhalt der QuelleDissertationen zum Thema "Myosine-X"
Crozet, Flora. „Somatic cells enhance the oocyte developmental potential through cytoplasmic protrusions“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS166.pdf.
Der volle Inhalt der QuelleIn female mammals, somatic cells surrounding the oocyte, termed granulosa cells, coordinate the critical stages of post-partum oocyte development, i.e. oocyte growth and meiotic maturation, by dialoguing with the oocyte. This dialogue is primarily mediated by cell-cell contact carried out by granulosa cell protrusions termed transzonal projections (TZPs). TZPs are analogous to filopodia in their snake-like shape, but also in their structural composition. TZPs are located in the zona pellucida, the extracellular matrix surrounding the oocyte, and their extremities establish cellular junctions with the oocyte membrane, i.e. gap and adherens junctions. In my thesis, I investigated the role of TZP-mediated interaction between granulosa cells and the oocyte in oocyte development. By generating a total knockout of Myosin-X, a molecular motor contained in TZPs and participating in filopodia formation, we obtained mouse mutant oocytes with a reduced TZP density at the end of oocyte growth. This reduction does not impede the oocyte from reaching a canonical size. However, it impairs zona pellucida integrity, oocyte-matrix adhesion, and the oocyte transcriptome at the end of oocyte growth, with a subset of transcripts mostly up-deregulated. Importantly, TZP-deprived oocytes tend to cease their development at metaphase of the first meiotic division, despite a well-assembled division spindle and properly aligned chromosomes. We propose that somatic cells modulate the synthesis or stability of a subset of oocyte transcripts through their cellular protrusions. This modulation enhances the oocyte capacity to end meiotic maturation, and by extension, the chances of producing an embryo
Planelles, Herrero Vicente José. „Bases mécanistiques et structurales de la régulation de l'activité des myosines“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066465.
Der volle Inhalt der QuelleMolecular motors are essential agents of force production in the cells: they convert the chemical energy released by the hydrolysis of ATP into mechanical work. This thesis focuses on myosins, a family of molecular motors responsible for actin-based motility. Myosin VI is unique among all of the myosin superfamily members in that it moves in the opposite direction of all other known myosins. Previous work revealed myosin VI tail ability to fold back, constituting a potential auto-inhibited state that prevents motor activity. Several myosin VI partners, binding to the C-terminal tail of the myosin, have been identified and shown to recruit the motor for different functions. In the first chapter of this thesis, the mechanism allowing the regulation of myosin VI activity has been studied using biochemical and biophysical analysis (SAXS, light scattering, microscopy, binding assays and mutagenesis). GIPC1, the most studied myosin VI partners, promotes myosin dimerization and activation. During my PhD, I have been also involved in two other projects, in line with my thesis project, that have led to the publication of four articles. Two shorter chapters are therefore devoted to these projects. The second chapter of my thesis explores myosin VII activity regulation by its cellular partners. Finally, the third chapter is devoted to the allosteric regulation of myosins activity by small molecules
McMichael, Brooke Kristin Trinrud. „Tropomyosin 4, myosin IIA, and myosin X enhance osteoclast function through regulation of cellular attachment structures“. Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1206052974.
Der volle Inhalt der QuellePlanelles, Herrero Vicente José. „Bases mécanistiques et structurales de la régulation de l'activité des myosines“. Electronic Thesis or Diss., Paris 6, 2017. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2017PA066465.pdf.
Der volle Inhalt der QuelleMolecular motors are essential agents of force production in the cells: they convert the chemical energy released by the hydrolysis of ATP into mechanical work. This thesis focuses on myosins, a family of molecular motors responsible for actin-based motility. Myosin VI is unique among all of the myosin superfamily members in that it moves in the opposite direction of all other known myosins. Previous work revealed myosin VI tail ability to fold back, constituting a potential auto-inhibited state that prevents motor activity. Several myosin VI partners, binding to the C-terminal tail of the myosin, have been identified and shown to recruit the motor for different functions. In the first chapter of this thesis, the mechanism allowing the regulation of myosin VI activity has been studied using biochemical and biophysical analysis (SAXS, light scattering, microscopy, binding assays and mutagenesis). GIPC1, the most studied myosin VI partners, promotes myosin dimerization and activation. During my PhD, I have been also involved in two other projects, in line with my thesis project, that have led to the publication of four articles. Two shorter chapters are therefore devoted to these projects. The second chapter of my thesis explores myosin VII activity regulation by its cellular partners. Finally, the third chapter is devoted to the allosteric regulation of myosins activity by small molecules
Bohil, Aparna Bhaskar Cheney Richard E. „Myosin-X is a molecular motor central to filopodia formation, adhesion, and signaling“. Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2006. http://dc.lib.unc.edu/u?/etd,713.
Der volle Inhalt der QuelleTitle from electronic title page (viewed Oct. 10, 2007). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Cell and Molecular Physiology - School of Medicine." Discipline: Cell and Molecular Physiology; Department/School: Medicine.
Prestidge, M. C. „Data analysis and processing in X-ray diffraction studies from myosin heads in muscle“. Thesis, Open University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292345.
Der volle Inhalt der QuelleDa, Silva Ambrose Gihan. „X-ray diffraction studies of the conformation of myosin heads in relaxed frog muscle“. Thesis, King's College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300318.
Der volle Inhalt der QuelleJuanhuix, Gibert Jordi. „Estructura molecular i funció dels músculs vius“. Doctoral thesis, Universitat Autònoma de Barcelona, 2001. http://hdl.handle.net/10803/3330.
Der volle Inhalt der QuelleAquesta tesi resol precisament un aspecte essencial de la pregunta: l'orientació dels caps de miosina en diferents estats musculars. Aquests caps són les proteïnes que enllacen els dos elements actius de la contracció: els filaments prims i gruixuts. El punt clau que permet respondre és el fet que el múscul presenta una estructura altament periòdica, on es pot fins i tot definir una cel·la quasicristal·logràfica. Aquesta periodicitat el fa un candidat per ser estudiat amb noves tècniques de difracció basades en la llum de sincrotró.
En conseqüència, i malgrat que tractem amb mostres purament biològiques, aquesta tesi pot ser considerada com un treball clàssic de difracció de mètodes directes, l'esquema brevíssim del qual és com segueix. La mostra és el teixit muscular, que s'obté per dissecció; la tècnica experimental és la difracció de raigs X; de l'anàlisi s'extreuen unes fases i uns mòduls que generen un mapa de densitat electrònica en una dimensió; finalment, el mapa és modelat mitjançant l'orientació de l'estructura cristal·logràfica de les unitats que el componen, de manera que en trobem l'orientació en músculs vius. La metodologia anterior se segueix en dos estats musculars bàsics: en descans (múscul relaxat) i en contracció isomètrica (múscul fent força sense moviment).
La tesi, doncs, està estructurada en 11 capítols que desenvolupen tot el treball que permet arribar a les conclusions finals. Els dos primers capítols estan dedicats a introduir l'estructura i fisiologia del múscul, i la teoria de difracció aplicada a la simetria que presenta, respectivament. El capítol 3 exposa el muntatge experimental i els protocols seguits en cada estat muscular estudiat, mentre que el capítol 4 presenta els resultats experimentals. En el capítol 5 s'extreu la fase del factor d'estructura mitjançant l'ajustament de diverses aproximacions teòriques a les dades en contracció isomètrica. En el capítol 6 es realitza el mateix ajustament en l'estat de descans. El mòdul del factor d'estructura en els dos estats és extret al capítol 7. Amb les dades anteriors, als capítols 8 i 9 s'extreu l'orientació dels caps de miosina en contracció isomètrica i en descans, respectivament. Al capítol 10 s'exposen breument els experiments posteriors realitzats en estats no isomètrics, és a dir, estats en què el múscul experimenta un canvi de longitud, així com el treball que ha de continuar la línia d'investigació d'aquesta tesi. Finalment, al capítol 11 s'extreuen les conclusions del treball en tots els estats musculars estudiats.
Finalment, convé puntualitzar que aquest ha estat realitzat en el marc del consorci del Laboratori de Llum de Sincrotró. Això explica l'especial esment d'aquesta font de raigs X, amb la inclusió de dos annexos que n'exposen les característiques, producció i usos. Així, aquesta tesi no solament pretén tenir rellevància pel contingut original que presenta, sinó que, a més, vol servir d'exemple dels nombrosos usos de la llum de sincrotró, i animar a l'utilització d'aquesta per part dels diferents equips d'investigació d'arreu del país.
The muscle is a fabulous organic machine able to convert, at a molecular level, chemical energy coming mainly from food into mechanical force. Many efforts have been dedicated from many fields of knowledge with the single objective of finding the answer to the golden question: How can muscle produce force and movement?
This thesis answers an essential aspect of the question: how the myosin heads are oriented in different muscular states. These heads are proteins that act as bridges between the two active elements of muscular contraction: the thin and thick filaments. The key point to find the answer this is the periodicity of muscle, high enough to be able to define a quasicrystallograpic structure. This periodicity allows the muscle to be studied by new diffraction techniques using synchrotron light.
As a consequence, even when we are dealing with purely biological samples, this thesis can be regarded as a classic diffraction work using direct methods. The brief summary is as follows. The sample is the muscular tissue, obtained by dissection. The experimental technique is the X ray diffraction; from data analysis we extract phases and moduli from the structure factor of myosin heads. These generate an electronic density map in one dimension, which is further modelled by orientating the crystallographic structure of the myosin heads. This methodology is followed in two basic muscular states: at rest (no contraction performed) and isometric contraction (muscle making force without motion).
Following this schema, the thesis is structured in 11 chapters. The first two introduce the muscle structure and physiology, as well as the diffraction theory of helical structures. Chapter 3 exposes the experimental setup and protocols followed in the different muscular states, whereas chapter 4 presents the experimental results. In chapter 5 we extract the phase of the structure factor by fitting the experimental meridional intensity with several theoretical approximations with the muscle in isometric contraction. Same work is done in chapter 6 with the rest state. The moduli of the structure factor in both states are extracted in chapter 7. Using the obtained data, in chapters 8 and 9 we finally extract the orientation of myosin heads in isometric contraction and rest, respectively. In chapter 10 we briefly expose the following experiments, done in non-isometric states, when muscle changes the length, as well as the future work to be done after this thesis. Finally, in chapter 11 we list the conclusions for every studied muscular state.
As a final point, we should remark that this work has been done in the Laboratori de Llum de Sincrotró. This explains why 2 more appendixes have been included exposing the characteristics, production and use of synchrotron sources. In fact, this thesis not only pretends to extend the knowledge of muscle, but also to be an example of the many uses of synchrotron light. We hope to contribute to expand the knowledge and use of this powerful tool among the national research groups.
岩野, さやか. „細胞の分裂軸を制御するPCTK1-KAP0-myosin Xシグナル伝達経路の解明“. Kyoto University, 2015. http://hdl.handle.net/2433/199560.
Der volle Inhalt der QuelleAddisu, Anteneh. „Natriuretic peptides as a humoral link between the heart and the gastrointestinal system“. [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002406.
Der volle Inhalt der QuelleBuchteile zum Thema "Myosine-X"
Tokuo, Hiroshi. „Myosin X“. In Advances in Experimental Medicine and Biology, 391–403. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38062-5_17.
Der volle Inhalt der QuelleTokuo, Hiroshi. „Myosin X“. In Encyclopedia of Signaling Molecules, 3314–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_404.
Der volle Inhalt der QuelleGewies, Andreas, Jürgen Ruland, Alexey Kotlyarov, Matthias Gaestel, Shiri Procaccia, Rony Seger, Shin Yasuda et al. „Myosin X“. In Encyclopedia of Signaling Molecules, 1173–77. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_404.
Der volle Inhalt der QuelleCecchi, Giovanni, M. Angela Bagni, Barbara Colombini, Christopher C. Ashley, Heinz Amenitsch, Sigrid Bernstorff und Peter J. Griffiths. „Use of Sinusoidal Length Oscillations to Detect Myosin Conformation by Time- Resolved X-Ray Diffraction“. In Advances in Experimental Medicine and Biology, 267–77. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9029-7_25.
Der volle Inhalt der QuelleArata, T., S. Kimura, Y. Sugimoto, Y. Takezawa, N. Iwasaki und K. Wakabayashi. „Structure of the Monomeric Actin-Myosin Head Complex as Revealed by X-Ray Solution Scattering“. In Advances in Experimental Medicine and Biology, 73–78. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4684-6039-1_9.
Der volle Inhalt der QuelleReconditi, Massimo, Ian Dobbie, Malcolm Irving, Olivier Diat, Peter Boesecke, Marco Linari, Gabriella Piazzesi und Vincenzo Lombardi. „Myosin Head Movements during Isometric Contraction Studied by X-Ray Diffraction of Single Frog Muscle Fibres“. In Advances in Experimental Medicine and Biology, 265–70. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4684-6039-1_31.
Der volle Inhalt der QuelleOshima, Kanji, Yasunori Takezawa, Yasunobu Sugimoto, Maya Kiyotoshi und Katsuzo Wakabayashi. „Modeling Analysis of Myosin-Based Meridional X-Ray Reflections from Frog Skeletal Muscles in Relaxed and Contracting States“. In Advances in Experimental Medicine and Biology, 243–49. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9029-7_23.
Der volle Inhalt der QuelleTakezawa, Yasunori, Yasunobu Sugimoto und Katsuzo Wakabayashi. „Extensibility of the Actin and Myosin Filaments in Various States of Skeletal Muscle as Studied by X-Ray Diffraction“. In Advances in Experimental Medicine and Biology, 309–17. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4684-6039-1_36.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Myosine-X"
Fujimura, K., T. Fujimoto, M. Takemoto, K. Oda, S. Maehama und A. Kuramoto. „INTERACTION OF MEMBRANE GLYCOPROTEIN GPIIb AND Ilia WITH CYTOSKELETAL PROTEINS DURING PLATELET ACTIVATION“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643515.
Der volle Inhalt der QuelleShibatay, N., K. Tanaka, K. Okamoto und T. Onji. „REORGANIZATION OF ACTIN AND MYOSIN IN THE ACTIVATED PLATELETS“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643539.
Der volle Inhalt der Quelle