Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Myopathie pseudo-hypertrophique de Duchenne – Thérapie génique“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Myopathie pseudo-hypertrophique de Duchenne – Thérapie génique" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Myopathie pseudo-hypertrophique de Duchenne – Thérapie génique"
Goyenvalle, Aurélie. „Développement d'une stratégie thérapeutique pour la dystrophie musculaire de Duchenne : Restauration du cadre de lecture par saut d'exon“. Paris 7, 2006. http://www.theses.fr/2006PA077104.
Der volle Inhalt der QuelleMost cases of Duchenne muscular dystrophy (DMD) are caused by dystrophin gene mutations that disrupt the mRNA reading frame. In some cases, forced exclusion of a single exon can restore the reading frame, given rise to a shorter, but still functional dystrophin protein. Our objective in this work was to produce antisense sequences targeting splice junctions of dystrophin gene to induce removal of disease-associated exons during pre-mRNA processing. To achieve this exon-skipping, we proposed to use the U7 small nuclear RNA as carrier and we first developed AAV vectors harboring chimeric U7snRNA carrying antisense sequences able to promote skipping of exon 23 of the murine dystrophine gene. After intramuscular or intra-arterial injection in mdx mice, we detected efficient skipping of the exon 23 and a long term rescue of dystrophin expression. We next evaluated this strategy in the canine GRMD model and showed the possibility to skip several exons, leading to a very large restoration of dystrophin in injected muscles. These promising results obtained on the mouse and canine models led us to develop the strategy on the human dystrophin gene and especially on the exon 51. We confirmed the skipping of the exon 51 both in vitro in patient myoblasts after transduction with the lentiviral vector and in vivo after intramuscular injection of an AAV-U7ex51 vector in the transgenic hDMD mouse. This study provides evidence on the efficiency of the U7snRNA mediated exon skipping strategy for Duchenne muscular dystrophy, that could concern more than 80% of patients and offers very promising tools for clinical treatment of DMD
Vincent, Lacaze Nathalie. „Expression du gène de la dystrophine et perspectives thérapeutiques des dystrophines musculaires de Duchenne et de Becker“. Paris 5, 1996. http://www.theses.fr/1996PA05CD12.
Der volle Inhalt der QuelleRouger, Karl. „Analyse de l'expression de gènes chez la souris déficiente en dystrophine (mdx), au moyen des puces à ADN“. Nantes, 2001. http://www.theses.fr/2001NANT03VS.
Der volle Inhalt der QuelleLéger, Adrien. „Pharmacologie moléculaire des vecteurs adéno-associés in situ dans le muscle squelettique : implications de la régulation épigénétique endogène sur l'expression du génome recombinant“. Nantes, 2012. https://archive.bu.univ-nantes.fr/pollux/show/show?id=1a1c348c-0066-4b62-9b03-7a811ea7abfb.
Der volle Inhalt der QuelleRecombinant AAV vectors have become increasingly popular in the field of gene therapy and promise to provide a treatment to numerous diseases including the Duchenne muscular dystrophy (DMD). Although they are among the most efficient vectors for in vivo gene transfer, improving transgene expression level will be a challenge to be face to achieve a therapeutic level without increasing the administered doses. In mammals, gene expression is widely controlled by epigenetic mechanisms, including promoter DNA methylation and histones post-translational modifications (HPTM). Interestingly, severe perturbations of these 2 mechanisms were described in muscles of DMD patients. Though it was reported that a transgene carried by gene therapy vectors can be targeted by repressive epigenetic modifications leading eventually to a reduced therapeutic benefit, there is virtually no information regarding epigenetic regulations of rAAV genome. First, we decided to determine if the efficiency of rAAV mediated gene expression is negatively impacted by epigenetic mechanisms in the muscle of primate and mouse. Second, we investigated the potential involvement of these mechanisms in the dystrophin deficient muscle by comparing healthy and DMD mice model. We obtained results suggesting an involvement of repressive HPTM in a partial restriction of rAAV mediated gene expression in vivo. This effect seems to be exacerbated in the dystrophynopathic muscle. Ultimately, we plan to counteract this repression using suitable chromatin modifying drugs
Monceau, Alexandra. „Effet de l'exercice physique, combiné ou non à une thérapie génique, sur la fonction musculaire de modèles murins de dystrophie musculaire de Duchenne“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS172.pdf.
Der volle Inhalt der QuelleDuchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the DMD gene encoding dystrophin, a protein essential for the integrity of the skeletal muscle fiber. Its absence causes increased muscle fragility, and extreme muscle weakness. Currently, there is no curative treatment, but the use of several combined therapeutic approaches seems promising. We tested the idea that regular physical activity could be a way to decrease dystrophic symptoms of skeletal muscle, especially those related to muscle function, in mice models of DMD. First, we evaluated the effect of chronic endurance exercise when combined with overexpression of Prox1, a transcription factor known to promote slower fibers in healthy muscle, which are less affected in DMD. We demonstrated that this combination allowed to decrease muscle fragility in mdx mice, the classical mouse model of DMD, and thus had the potential to stop the progression of the disease. Subsequently, we were interested in the effect of chronic endurance exercise when combined with gene therapy, which restores dystrophin expression, in D2-mdx mouse, a severe model of DMD. We showed that chronic endurance exercise decreased the efficiency of the gene therapy, by decreasing the restoration of dystrophin. Finally, we characterized the effects of chronic resistance exercise in D2-mdx mice. Our results indicate an incredibly significant improvement in muscle function in response to mechanical overload, without obvious muscle damage in this severe model
Dupont, Jean-Baptiste. „Pharmacologie moléculaire des vecteurs adéno-associés recombinants dans le muscle squelettique déficient en dystrophine“. Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=74cd08ba-0755-4c2f-857d-e2219afdd24c.
Der volle Inhalt der QuelleDuchenne Muscular Dystrophy (DMD) is a neuromuscular disease caused by mutations in the gene encoding the Dystrophin protein. In the absence of Dystrophin, muscle cells endure a variety of mechanical and metabolic perturbations, progressively leading to their degeneration. With no curative treatment to date, gene therapy emerged recently as a promising strategy, notably thanks to the use of recombinant vectors derived from the Adeno-Associated Virus (rAAV). Nonetheless, the long term benefits of this strategy are controversial, and recent studies conducted in DMD animal models suggest that transgene expression is only transient. In parallel, rAAV vector molecular fate following administration in Dystrophin-deficient muscles remains almost entirely unexplored. However, it could be deeply modified given the cell and tissue remodeling observed in dystrophic muscles. The work presented in this PhD manuscript aims to decipher the consequences of the absence of Dystrophin on rAAV vector efficiency and long term persistence. In the first place, this work consisted in the quantification of rAAV vector efficiency in murine Dystrophin-deficient muscles. Then, we identified restriction factors with potential negative impacts on the stability of rAAV vector genomes and transgene mRNA. Finally, we explored an alternative strategy combining gene therapy with a relevant pharmacological treatment with the aim to counteract these restriction factors. In the end, this kind of approach may help optimize future rAAV-mediated gene therapy protocols to be subsequently applied in DMD patients
Vulin, Adeline. „Restauration de la dystrophine par saut d'exons chez le modèle canin GRMD ; Augmentation de la masse musculaire par inhibition de la myostatine : rationnel thérapeutique pour DMD ?“ Paris 12, 2005. https://athena.u-pec.fr/primo-explore/search?query=any,exact,990003942550204611&vid=upec.
Der volle Inhalt der QuelleDuchenne Muscular Dystrophy (DMD) is a progressive devastating disorder that remains incurable in spite of development of different therapeutic strategies. We decided to work on two original approaches. Our first aim was to setup molecular tools for post-transcriptional correction by targeting exon skipping of frequent out-of-frame deletions in the dystrophin gene and obtain a shorter but functional protein. We have achieved persistent exon skipping by a single administration of an AAV vector expressing antisense sequences linked to a modified U7 small nuclear RNA. Our results show the sustained production of functional dystrophin at physiological levels in injected muscles of GRMD dog model and the correction of the muscular dystrophy. Our second aim was to improve the DMD phenotype by increasing the skeletal muscle mass thanks to the down-regulation of myostatin and verify a possible improvement of the muscular regeneration. We have demonstrated that the propeptide of myostatin is an effective agent for increasing muscle mass and the functional benefit continue to be established in dystrophic mouse and dog models
Dias, Florencio Leite Gabriella. „Recombinant Adeno-Associated Viruses : process development and gene transfer application for muscular dystrophy“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV051/document.
Der volle Inhalt der QuelleThe interest of recombinant Adeno-Associated Virus (rAAV) vectors for research and clinical purposes in the treatment of genetic diseases have led to the rapid evolution of methods for AAV production in the last two decades (Ayuso et al., 2010). Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. In addition, the specificity of the treatment can be increased when the right serotype is chosen to target a specific tissue. Among the production methods currently in use, tri-transfection of human embryonic kidney 293 (HEK293) cells remains the most popular for research scale; and rAAV production mediated by baculoviruses for larger scales. The increasing importance of viral vectors in the practical application of gene therapy demands the improvement of production processes, especially when it concerns the yields and purity of the final product. My work during these four years was focused in two main points: (1) improve biotechnological processes employed in rAAV production for research and pre-clinical study scales and (2) test in vitro and in vivo the applications for rAAV in the field of genome editing. Gene-editing mediated by engineered nucleases offers new hopes for the treatment of several monogenic inherited diseases. Recently discovered, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Cas9 system provides important tools needed to correct by homology-directed repair mutations. Our canonical model is the mdx mouse, a naturally occurring animal model of Duchenne Muscular Dystrophy (DMD). DMD mutations, which lead to the absence of the protein dystrophin, results in a progressive and fatal myopathy. Several strategies, from pharmacological to exon-skipping strategies, have attempt to revert the phenotype and slow down the disease progress, however results are not yet satisfactory. This new and powerful genome editing tool can be vectorized by rAAV. Results for the first part were published in 2015 and 2016 and will be presented in the form of articles and for the second part I will present preliminary results and perspectives for the work that will be continued in the lab
Bensalah, Mona. „Fibrose musculaire : acteurs cellulaires et stratégies thérapeutiques“. Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS031.pdf.
Der volle Inhalt der QuelleFibrosis is described as an excessive accumulation of extracellular matrix proteins that replace tissue and alter its function. In skeletal muscle, fibrosis is a pathological feature common to many dystrophies including Oculopharyngeal Muscular Dystrophy (OPMD) and Duchenne Muscular Dystrophy (DMD). In many tissues, resident cells called fibroblasts seem to have a key role in establishing and maintaining fibrosis, however, the exact nature and role of these cells in human muscle fibrosis are still very poorly defined. In this context, we characterized the non-myogenic cell population (CD56- cells) of control and fibrotic muscles and showed that CD56- fibrotic muscle cells have a different phenotype than control muscle cells (proliferative capacity, sensitivity to TGF-β, secretion, impact on fusion and regeneration). Our study highlights the importance of the cross-talk between cell types within the muscle, especially fibrotic and dystrophic muscle. Currently, many anti-fibrotic gene therapy strategies are being developed but while most of them prevent the apparition of fibrosis, none has yet been able to revert pre-existing fibrosis. In this context, we first compared 10 serotypes of AAV by intramuscular injection to evaluate whether one of these serotype was able to transduce fibroblasts in vivo and whether fibrosis impair the transduction of muscle fibers. Then we tested the anti-fibrotic therapeutic potential of AAV-Relaxin (RLN) on DBA/2-mdx mice, model for DMD. Altogether these studies will allow us to improve our understanding of the pathophysiological mechanisms involved in muscle fibrosis and to develop effective anti-fibrotic strategies
Chassagne, Julie. „Mécanismes moléculaires impliqués dans l’efficacité de transduction des vecteurs AAV dans le muscle dystrophique“. Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS514.pdf.
Der volle Inhalt der QuelleDuchenne Muscular Dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin and causing severe muscle degeneration. No curative treatment exists today but AAV-based gene therapy is one of the most promising strategies for treating DMD. Despite the well-established efficacy of AAV serotype 8 (AAV8) for gene transfer into muscle, high doses of vectors are required to achieve therapeutic efficacy in DMD animal models. In this context, I aimed at investigating the mechanisms that may limit the transduction efficiency of the AAV8 vector in dystrophic muscle. For this, I studied the fate of the AAV vector in the DMD muscle and then characterized the endosomal system, essential for the transport and maturation of AAV vectors, in different models of DMD. We have shown that the transduction efficiency of AAV8 is lower in DMD muscle cells compared to controls. The dysfunction of the endosomal system identified in this study may impact AAV vector gene transfer into these cells. Moreover, improving the efficiency of AAV vectors in gene therapy also requires a better understanding of cellular proteins that interact with the viral genome and regulate its expression. In this context, we have shown that the transcription factors RFX1 and RFX3 are able to interact with the ITR region of the viral genome and to modulate the expression of AAV vectors