Camman, Marie. "Hydrogels de collagène dense structurés par impression 3D pour modéliser la matrice extracellulaire musculaire et cardiaque dans la Dystrophie Musculaire de Duchenne." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS447.
Annotation:
La myopathie de Duchenne est une maladie génétique rare caractérisée par une dégénération progressive des muscles striés notamment squelettiques et cardiaque. A l’échelle de la cellule, l’absence de dystrophine perturbe l'intégrité de la membrane plasmique, la signalisation cellulaire et par conséquent la contraction musculaire. A l’échelle du tissu, ces changements se traduisent par une faiblesse musculaire et par une perturbation de la matrice extracellulaire qui se rigidifie, perd son organisation anisotrope et devient peu poreuse. La matrice joue un rôle essentiel dans l’évolution de la maladie et est souvent négligée dans les modèles existants. Ainsi, ce projet de thèse a eu pour but de développer un nouveau modèle tissulaire cardiaque et musculaire prenant en compte ces modifications structurelles de la matrice pour améliorer la compréhension de la pathologie et générer un modèle physiologique pour tester des molécules thérapeutiques. Tout d’abord, un modèle de matrice extracellulaire saine a été généré par impression 3D de collagène de type I dense. Les paramètres ont été ajustés pour reproduire la matrice physiologique, à savoir une rigidité de 10 kPa, de l’anisotropie et de la porosité. L’impression de collagène dense permet à la fois d’aligner les molécules de collagène et de générer une porosité intrinsèque dans l’hydrogel de collagène. Ensuite, son pendant pathologique a pu être développé en modifiant les paramètres d’impression et de gélification du collagène pour obtenir une matrice de rigidité 50 kPa, isotrope et non poreuse. In vivo, les cellules musculaires et cardiaques sont physiologiquement agencées sous forme de fuseaux. Cette morphologie particulière a été reproduite au sein des matrices développées en créant un pore cylindrique par moulage qui a été colonisé par les cellules. L’enjeu est de recréer au sein de ces pores un microtissu jointif pour mimer les conditions physiologiques. En utilisant des cardiomyocytes dérivés de cellules souches pluripotentes induites humaines ou des myoblastes murins, nous avons respectivement obtenu des microtissus cardiaques et musculaires au contact de matrices saines ou pathologiques. Pour le microtissu musculaire, les cellules saines ensemencées dans la matrice pathologique montrent un stress du à l’hypoxie, associé à un ralentissement du cycle cellulaire et une moins bonne différentiation en myotubes. Pour le microtissu cardiaque, les cellules ensemencées dans le modèle pathologique ont montré une moins bonne contraction sous stimulation. Par ailleurs, les matrices ont été adaptées à une puce microfluidique pour assurer la perfusion de milieu de culture par les pores créés par l’impression 3D. Cette perfusion permet d’améliorer la diffusion de l’oxygène et des nutriments au sein du modèle. Ces nouveaux modèles de tissu cardiaque et musculaire permettent de prendre en compte les interactions cellule/cellule mais aussi cellule/matrice dans l’évolution de la pathologie. Ainsi, les différentes combinaisons entre matrice saine/pathologique et cellules saines/mutées permettrait à l’avenir de mieux comprendre la pathologie et de trouver des stratégies thérapeutiques adaptées<br>Duchenne Muscular Dystrophy is a rare genetic disease characterized by progressive degeneration of striated muscles, notably skeletal and cardiac. At the cellular level, the absence of dystrophin disturbs the integrity of the plasma membrane, cell signaling, and consequently muscle contraction. At the tissue level, these changes result in muscle weakness and a disturbance of the extracellular matrix which becomes rigid and loses its anisotropic organization with reduced porosity. The matrix plays a crucial role in the evolution of the disease and is often neglected in existing models. The matrix plays a crucial role in the evolution of the disease and is often neglected in existing models. This project aims to develop a new tissue model that considers these structural changes in ECM to improve our understanding of the pathology and discover novel therapeutic solutions. First, the 3D printing of dense type I collagen generated a healthy extracellular matrix model. Its parameters were adjusted to reproduce the physiological matrix, i.e., a stiffness of 10 kPa, anisotropy, and porosity. Dense collagen printing allows collagen molecules alignment and generates porosity. Then, its pathological counterpart could be synthesized by modifying the printing and gelling parameters of collagen to get a matrix with a 50 kPa stiffness, isotropic, and non-porous. In vivo, the muscle and heart cells are physiologically arranged in bundles. A cellularized cylindrical pore generated by molding reproduced this morphology within the matrices. To mimic the physiological conditions, the challenge was to recreate a joined microtissue with densely-packed cells within these pores. We obtained a cardiac and a muscular microtissue with both types of matrices (healthy or pathological) using human cardiomyocytes derived from induced pluripotent stem cells or murine myoblasts. For the muscle microtissue, the healthy cells seeded in the pathological matrix showed high stress due to hypoxia, associated with cell cycle arrest and weak differentiation into myotubes. For the cardiac microtissue, cells seeded in the pathological model had irregular beatings when stimulated. In addition, the matrices were adapted to a microfluidic chip to ensure the perfusion of the culture medium through the pores created by the 3D printing. This perfusion enhances nutrient and oxygen diffusion in the model. These new cardiac and muscular tissue models take into account cell/cell and cell/matrix interactions in the evolution of the pathology. Thus, the different combinations between healthy/pathological matrix and healthy/mutated cells will allow us a better understanding of the pathology to discover novel and adapted therapeutic strategies