Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mycorrhizas Physiology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mycorrhizas Physiology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mycorrhizas Physiology"
Jones, Melanie D., und Sally E. Smith. „Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms?“ Canadian Journal of Botany 82, Nr. 8 (01.08.2004): 1089–109. http://dx.doi.org/10.1139/b04-110.
Der volle Inhalt der QuelleFarias-Larios, J., S. Guzman-Gonzalez und A. Michel-Rosales. „The Advances in the Study on Mycorrhizas of Fruit Trees in Dry Tropics of Mexico“. HortScience 31, Nr. 4 (August 1996): 684c—684. http://dx.doi.org/10.21273/hortsci.31.4.684c.
Der volle Inhalt der QuelleDoré, Jeanne, Roland Marmeisse, Jean-Philippe Combier und Gilles Gay. „A Fungal Conserved Gene from the Basidiomycete Hebeloma cylindrosporum Is Essential for Efficient Ectomycorrhiza Formation“. Molecular Plant-Microbe Interactions® 27, Nr. 10 (Oktober 2014): 1059–69. http://dx.doi.org/10.1094/mpmi-03-14-0087-r.
Der volle Inhalt der QuelleDodd, John C. „Arbuscular mycorrhizas: physiology and function“. Geoderma 104, Nr. 3-4 (Dezember 2001): 345–46. http://dx.doi.org/10.1016/s0016-7061(01)00064-7.
Der volle Inhalt der QuelleSmith, Sally. „Arbuscular Mycorrhizas: Physiology and Function“. Soil Biology and Biochemistry 33, Nr. 11 (September 2001): 1575–76. http://dx.doi.org/10.1016/s0038-0717(01)00097-9.
Der volle Inhalt der QuelleRunjin, Liu, Xu Kun und Liu Pengqi. „The Advances in the Study on Mycorrhizas of Fruit Trees in China“. HortScience 30, Nr. 4 (Juli 1995): 886C—886. http://dx.doi.org/10.21273/hortsci.30.4.886c.
Der volle Inhalt der QuelleMaldonado-Mendoza, Ignacio E., Gary R. Dewbre und Maria J. Harrison. „A Phosphate Transporter Gene from the Extra-Radical Mycelium of an Arbuscular Mycorrhizal Fungus Glomus intraradices Is Regulated in Response to Phosphate in the Environment“. Molecular Plant-Microbe Interactions® 14, Nr. 10 (Oktober 2001): 1140–48. http://dx.doi.org/10.1094/mpmi.2001.14.10.1140.
Der volle Inhalt der QuelleRillig, Matthias C., und Daniel L. Mummey. „Mycorrhizas and soil structure“. New Phytologist 171, Nr. 1 (Juli 2006): 41–53. http://dx.doi.org/10.1111/j.1469-8137.2006.01750.x.
Der volle Inhalt der QuelleSelosse, Marc-André. „Are liverworts imitating mycorrhizas?“ New Phytologist 165, Nr. 2 (07.01.2005): 345–50. http://dx.doi.org/10.1111/j.1469-8137.2004.01298.x.
Der volle Inhalt der QuelleAshford, Anne. „Tubular vacuoles in arbuscular mycorrhizas“. New Phytologist 154, Nr. 3 (06.06.2002): 545–47. http://dx.doi.org/10.1046/j.1469-8137.2002.00434_2.x.
Der volle Inhalt der QuelleDissertationen zum Thema "Mycorrhizas Physiology"
Cavagnaro, Timothy R. „Structure and physiology of Paris-type arbuscular mycorrhizas“. Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phc376.pdf.
Der volle Inhalt der QuelleSims, Karen. „Growth physiology and systematics of some S.E.Asian ectomycorrhizal fungi, with additional reference to isozyme interpretations“. Thesis, University of Kent, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296723.
Der volle Inhalt der QuelleSnellgrove, Robert Charles. „Effects of vesicular-arbuscular mycorrhizas on the carbon and phosphorus physiology of Allium species“. Thesis, Rothamsted Research, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376110.
Der volle Inhalt der QuelleGruhn, Christine Mae. „Effect of a heavy metal on ecto- and vesicular-arbuscular mycorrhizal fungi: the physiology, ultrastructure, and ecology of copper stress and tolerance“. Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54531.
Der volle Inhalt der QuellePh. D.
Kosuta, Sonja A. „Movement of copper from in-ground root control fabrics“. Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21582.
Der volle Inhalt der QuelleIngarfield, Patricia Jean. „Effect of water stress and arbuscular mycorrhiza on the plant growth and antioxidant potential of Pelargonium reniforme Curtis and Pelargonium sidoides DC“. Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2794.
Der volle Inhalt der QuellePelargoniums have been studied extensively for their medicinal properties. P. reniforme and P. sidoides in particular are proven to possess antimicrobial, antifungal and antibiotic abilities due to their high antioxidant potential from compounds isolated from their tuberous roots. These plants have now been added to the medicine trade market and this is now causing concern for conservationists and they are generally harvested from the wild populations. This study evaluated the effect of water stress alone and in conjunction with arbuscular mycorrhiza on two species of Pelargoniums grown in a soilless medium. The experiment consisted of five different watering regimes which were applied to one hundred plants of each species without inoculation with arbuscular mycorrhiza and to one hundred plants of each species in conjunction with inoculation with AM. All the plants in the experiment were fed with a half-strength, standard Hoagland nutrient solution at varying rates viz. once daily to pot capacity, every three days to pot capacity, every six days to pot capacity, every twelve days to pot capacity and every twenty-four days to pot capacity. The objectives of the study were to measure the nutrient uptake, SPAD-502 levels (chlorophyll production) and metabolite (phenolics) formation of both species, grown under various rates of irrigation and water stress, as well with or without the addition of arbuscular mycorrhiza at planting out. Each treatment consisted of 10 replicates. SPAD-502 levels were measured weekly using a hand held SPAD-502 meter. Determination of nutrient uptake of macronutrients N, K, P, Ca, Mg and Na and micronutrients Cu, Zn, Mn, Al and B were measured from dry plant material at the end of the experiment by Bemlab, 16 Van Der Berg Crescent, Gants Centre, Strand. Plant growth in terms of wet and dry shoot and root weight were measured after harvest. Determination of concentrations of secondary metabolites (phenolic compounds) were assayed and measured spectrophotometrically at the end of the experiment. The highest significant reading of wet shoot weight for P. reniforme was taken in treatments 1 and 2 with and without mycorrhiza i.e. WF1, WF1M, WF2 and WF2M, with the highest mean found in WF1 with no mycorrhiza. This indicates that under high irrigation AM plays no part in plant growth, possibly due to leaching. More research is necessary in this regard. With regard to wet root weight, this was found to be not significant in any of the treatments, other than the longest roots being found in WF4. Measurements for dry root weight showed that WF1,2,3 and 5 were the most significant at P≤ 0.001 significance, with the highest weight found at treatment being WF3 and WF3M. The highest mean of shoot length of the plants was measured in treatment WF2 at moderate watering, but no statistical difference was found with water application and mycorrhiza addition. Nutrient uptake was increased in P. sidoides in all the different watering levels in the experiment except in the uptake of Mg. AM inoculation showed an increase in the uptake of Ca, while absorption of N occurred at higher water availability. K uptake was enhanced by the addition of AM in high water availability and K utilisation decreased as water stress increased. Medium to low watering resulted in higher leaf content in P. sidoides while the interaction between water availability and AM inoculation increased chlorophyll production towards the end of the experiment.
Lintnaar, Melissa. „The physiological responses of salinity stressed tomato plants to mycorrhizal infection and variation in rhizosphere carbon dioxide concentration“. Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/52002.
Der volle Inhalt der QuelleENGLISH ABSTRACT: This investigation was undertaken to determine whether elevated concentrations of dissolved inorganic carbon (DIC) supplied to plant roots could improve plant growth and alleviate the effects of salinity stress on tomato plants infected with arbuscular mycorrhizae. Lycopersicon esculentum cv. FI44 seedlings were grown in hydroponic culture (pH 5.8) with 0 and 75 mM NaCI and with or without infection with the fungus Glomus mosseae. The root solution was aerated with ambient CO2 (360 ppm) or elevated CO2 ( 5 000 ppm) concentrations. The arbuscular and hypha I components of mycorrhizal infection as well as the percentages total infection were decreased or increased according to the variation in seasons. The plant dry weight of mycorrhizal plants was increased by 30% compared to non-mycorrhizal plants at elevated concentrations of CO2, while the dry weight was decreased by 68% at ambient CO2 concentrations. Elevated CO2 also stimulated the growth of the mycorrhizal fungus. Elevated CO2 increased the plant dry weight and stimulated fungal growth of mycorrhizal plants possibly by the provision of carbon due to the incorporation of HCO)- by PEPc. Plant roots supplied with elevated concentrations of CO2 had a decreased CO2 release rate compared to roots at ambient CO2. This decrease in CO2 release rate at elevated CO2 was due to the increased incorporation of HC03- by PEPc activity. Under conditions of salinity stress plants had a higher ratio of N03-: reduced N in the xylem sap compared to plants supplied with 0 mM NaCI. Under salinity stress conditions, more N03- was transported in the xylem stream possibly because of the production of more organic acids instead of amino acids due to low P conditions under which the plants were grown. The N03· uptake rate of plants increased at elevated concentrations of CO2 in the absence of salinity because the HCO)- could be used for the production of amino acids. In the presence of salinity, carbon was possibly used for the production of organic acids that diverted carbon away from the synthesis of amino acids. It was concluded that mycorrhizas were beneficial for plant growth under conditions of salinity stress provided that there was an additional source of carbon. Arbuscular mycorrhizal infection did not improve the nutrient uptake of hydroponically grown plants.
AFRIKAANSE OPSOMMING: In hierdie studie was die effek van verhoogde konsentrasies opgeloste anorganiese koolstof wat aan plant wortels verskaf is, getoets om te bepaal of dit die groei van plante kan verbeter asook of sout stres verlig kon word in tamatie plante wat met arbuskulêre mikorrhizas geïnfekteer was. Lycorpersicon esculentum cv. FJ44 saailinge was in water kultuur gegroei (pH 5.8) met 0 en 75 mM NaCI asook met of sonder infeksie met die fungus Glomus mosseae. Die plant wortels was bespuit met normale CO2 (360 dele per miljoen (dpm)) sowel as verhoogde CO2 (5 000 dpm) konsentrasies. Die arbuskulere en hife komponente, sowel as die persentasie infeksie was vermeerder of verminder na gelang van die verandering in seisoen. Die plant droë massa van mikorrhiza geïnfekteerde plante by verhoogde CO2 konsentrasies was verhoog met 30% in vergelyking met plante wat nie geïnfekteer was nie, terwyl die droë massa met 68% afgeneem het by gewone CO2 konsentrasies. Verhoogde CO2 konsentrasies het moontlik die plant droë massa en die groei van die fungus verbeter deur koolstof te verskaf as gevolg van die vaslegging van HCO)- deur die werking van PEP karboksilase. Plant wortels wat met verhoogde CO2 konsentrasies bespuit was, het 'n verlaagde CO2 vrystelling getoon in vergelyking met die wortels by normale CO2 vlakke. Die vermindering in CO2 vrystelling van wortels by verhoogde CO2 was die gevolg van die vaslegging van HC03- deur PEPk aktiwiteit. Onder toestande van sout stres, het plante 'n groter hoeveelheid N03- gereduseerde N in die xileemsap bevat in vergelyking met plante wat onder geen sout stres was nie, asook meer NO)- was in die xileemsap vervoer moontlik omdat meer organiese sure geproduseer was ten koste van amino sure. Dit was die moontlike gevolg omdat die plante onder lae P toestande gegroei het. Die tempo van NO.; opname was verhoog onder verhoogde CO2 konsentrasies en in die afwesigheid van sout stres omdat die HCO)- vir die produksie van amino sure gebruik was. In die teenwoordigheid van sout was koolstof moontlik gebruik om organiese sure te vervaardig wat koolstof weggeneem het van die vervaardiging van amino sure. Daar is tot die slotsom gekom dat mikorrhizas voordelig is vir die groei van plante onder toestande van sout stres mits daar 'n addisionele bron van koolstof teenwoordig is. Arbuskulere mikorrhiza infeksie het 'n geringe invloed gehad op die opname van voedingstowwe van plante wat in waterkultuur gegroei was.
Amerian, Mohammad Reza. „Effects of VA mycorrhizae and drought on the physiology of maize and bean grown singly and intercropped“. Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247833.
Der volle Inhalt der QuelleAlarcon, Alejandro. „The physiology of mycorrhizal Lolium multiflorum in the phytoremediation of petroleum hydrocarbon-contaminated soil“. [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1800.
Der volle Inhalt der QuellePeterson, Kendra Leigh. „Effects of humic acids and soil symbionts on growth, physiology, and productivity of two crop species“. Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1501187076919492.
Der volle Inhalt der QuelleBücher zum Thema "Mycorrhizas Physiology"
Koltai, Hinanit, und Yoram Kapulnik. Arbuscular mycorrhizas: Physiology and function. 2. Aufl. Dordrecht: Springer Science+Business Media, 2010.
Den vollen Inhalt der Quelle findenKoltai, Hinanit, und Yoram Kapulnik, Hrsg. Arbuscular Mycorrhizas: Physiology and Function. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6.
Der volle Inhalt der QuelleKapulnik, Yoram, und David D. Douds, Hrsg. Arbuscular Mycorrhizas: Physiology and Function. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-0776-3.
Der volle Inhalt der Quelle1939-, Varma A., Hrsg. Mycorrhiza: State of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. 3. Aufl. Berlin: Springer, 2008.
Den vollen Inhalt der Quelle findenVarma, Ajit, Ram Prasad und Narendra Tuteja, Hrsg. Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57849-1.
Der volle Inhalt der QuelleKapulnik, Yoram. Arbuscular Mycorrhizas: Physiology And Function. Springer, 2010.
Den vollen Inhalt der Quelle finden(Editor), Y. Kapulnik, und David D. Douds Jr. (Editor), Hrsg. Arbuscular Mycorrhizas: Physiology and Function. Springer, 2000.
Den vollen Inhalt der Quelle findenYoram, Kapulnik, und Douds David D, Hrsg. Arbuscular mycorrhizas: Physiology and function. Dordrecht: Kluwer Academic Publishers, 2000.
Den vollen Inhalt der Quelle findenJr, David D. Douds, und Yoram Kapulnik. Arbuscular Mycorrhizas: Physiology and Function. Springer London, Limited, 2013.
Den vollen Inhalt der Quelle findenKoltai, Hinanit, und Yoram Kapulnik. Arbuscular Mycorrhizas: Physiology and Function. Springer, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Mycorrhizas Physiology"
Nehl, David B., und Peter A. McGee. „Ecophysiology of Arbuscular Mycorrhizas in Cotton“. In Physiology of Cotton, 206–12. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3195-2_19.
Der volle Inhalt der QuelleGiovannetti, Manuela, Luciano Avio und Cristiana Sbrana. „Fungal Spore Germination and Pre-symbiotic Mycelial Growth – Physiological and Genetic Aspects“. In Arbuscular Mycorrhizas: Physiology and Function, 3–32. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6_1.
Der volle Inhalt der QuelleJansa, Jan, und Milan Gryndler. „Biotic Environment of the Arbuscular Mycorrhizal Fungi in Soil“. In Arbuscular Mycorrhizas: Physiology and Function, 209–36. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6_10.
Der volle Inhalt der QuelleRuiz-Lozano, Juan Manuel, und Ricardo Aroca. „Host Response to Osmotic Stresses: Stomatal Behaviour and Water Use Efficiency of Arbuscular Mycorrhizal Plants“. In Arbuscular Mycorrhizas: Physiology and Function, 239–56. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6_11.
Der volle Inhalt der QuelleTurnau, Katarzyna, Przemysław Ryszka und Grzegorz Wojtczak. „Metal Tolerant Mycorrhizal Plants: A Review from the Perspective on Industrial Waste in Temperate Region“. In Arbuscular Mycorrhizas: Physiology and Function, 257–76. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6_12.
Der volle Inhalt der QuelleEstaún, Victoria, Cinta Calvet und Amèlia Camprubí. „Effect of Differences Among Crop Species and Cultivars on the Arbuscular Mycorrhizal Symbiosis“. In Arbuscular Mycorrhizas: Physiology and Function, 279–95. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6_13.
Der volle Inhalt der QuelleKoide, Roger T. „Mycorrhizal Symbiosis and Plant Reproduction“. In Arbuscular Mycorrhizas: Physiology and Function, 297–320. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6_14.
Der volle Inhalt der QuelleNagahashi, Gerald, David D. Douds und Yurdagul Ferhatoglu. „Functional Categories of Root Exudate Compounds and their Relevance to AM Fungal Growth“. In Arbuscular Mycorrhizas: Physiology and Function, 33–56. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6_2.
Der volle Inhalt der QuelleGenre, Andrea, und Paola Bonfante. „The Making of Symbiotic Cells in Arbuscular Mycorrhizal Roots“. In Arbuscular Mycorrhizas: Physiology and Function, 57–71. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6_3.
Der volle Inhalt der QuelleRochange, Soizic. „Strigolactones and Their Role in Arbuscular Mycorrhizal Symbiosis“. In Arbuscular Mycorrhizas: Physiology and Function, 73–90. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9489-6_4.
Der volle Inhalt der Quelle