Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mycobacterium tuberculosis sequencing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mycobacterium tuberculosis sequencing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mycobacterium tuberculosis sequencing"
Sharma, Megha, Bharti Malhotra, Jitendra Tiwari und Shipra Bhargava. „Profile of Nontuberculous Mycobacteria in Patients Suspected of Tuberculosis and Drug-Resistant Tuberculosis“. Journal of Laboratory Physicians 12, Nr. 03 (23.11.2020): 203–11. http://dx.doi.org/10.1055/s-0040-1721160.
Der volle Inhalt der QuelleSoini, Hanna, und James M. Musser. „Molecular Diagnosis of Mycobacteria“. Clinical Chemistry 47, Nr. 5 (01.05.2001): 809–14. http://dx.doi.org/10.1093/clinchem/47.5.809.
Der volle Inhalt der QuelleDe Smet, Koen A. L. „Mycobacterium tuberculosis: Beyond genome sequencing“. Trends in Microbiology 5, Nr. 11 (November 1997): 429–31. http://dx.doi.org/10.1016/s0966-842x(97)01132-3.
Der volle Inhalt der QuelleAhmad, Suhail, und Eiman Mokaddas. „Diversity of Nontuberculous Mycobacteria in Kuwait: Rapid Identification and Differentiation of Mycobacterium Species by Multiplex PCR, INNO-LiPA Mycobacteria v2 Assay and PCR Sequencing of rDNA“. Medical Principles and Practice 28, Nr. 3 (2019): 208–15. http://dx.doi.org/10.1159/000498910.
Der volle Inhalt der QuelleSpitaleri, Andrea, Arash Ghodousi, Paolo Miotto und Daniela Maria Cirillo. „Whole genome sequencing in Mycobacterium tuberculosis“. Annals of Translational Medicine 7, S6 (September 2019): S197. http://dx.doi.org/10.21037/atm.2019.07.28.
Der volle Inhalt der QuelleCabibbe, Andrea M., Timothy M. Walker, Stefan Niemann und Daniela M. Cirillo. „Whole genome sequencing of Mycobacterium tuberculosis“. European Respiratory Journal 52, Nr. 5 (12.09.2018): 1801163. http://dx.doi.org/10.1183/13993003.01163-2018.
Der volle Inhalt der QuelleMiller, Kennon, Susan M. Harrington und Gary W. Procop. „Acid-fast Smear and Histopathology Results Provide Guidance for the Appropriate Use of Broad-Range Polymerase Chain Reaction and Sequencing for Mycobacteria“. Archives of Pathology & Laboratory Medicine 139, Nr. 8 (09.01.2015): 1020–23. http://dx.doi.org/10.5858/arpa.2013-0705-oa.
Der volle Inhalt der QuelleWilliams, K. J., C. L. Ling, C. Jenkins, S. H. Gillespie und T. D. McHugh. „A paradigm for the molecular identification of Mycobacterium species in a routine diagnostic laboratory“. Journal of Medical Microbiology 56, Nr. 5 (01.05.2007): 598–602. http://dx.doi.org/10.1099/jmm.0.46855-0.
Der volle Inhalt der QuelleMoriconi, Patricia Rossi, Cássia Yumi Ikuta, Fábio Gregori, Gisele de Oliveira, Sheila de Oliveira, Paloma De Oliveira Tonietti, José Soares Ferreira Neto, Fernando Ferreira, Adriana Cortez und Evelise Oliveira Telles. „Mycobacteria in Minas cheese commercialized in open fairs in São Paulo, Brazil“. Brazilian Journal of Veterinary Research and Animal Science 55, Nr. 4 (26.12.2018): e146525. http://dx.doi.org/10.11606/issn.1678-4456.bjvras.2018.146525.
Der volle Inhalt der QuelleKoentjoro, Maharani Pertiwi, Adyan Donastin und Endry Nugroho Prasetyo. „A SIMPLE METHOD OF DNA EXTRACTION OF MYCOBACTERIUM TUBERCULOSIS FROM SPUTUM CULTURES FOR SEQUENCING ANALYSIS“. African Journal of Infectious Diseases 15, Nr. 2s (01.09.2021): 19–22. http://dx.doi.org/10.21010/ajid.v15i2s.2.
Der volle Inhalt der QuelleDissertationen zum Thema "Mycobacterium tuberculosis sequencing"
Forst, Jannine. „Detecting and sequencing Mycobacterium tuberculosis aDNA from archaeological remains“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/detecting-and-sequencing-mycobacterium-tuberculosis-adna-from-archaeological-remains(a806f3a9-8d22-4395-a1ff-a3ffbcb1c8cc).html.
Der volle Inhalt der QuelleLeung, Sau-man. „Direct detection of rifampin-resistant mycobacterium tuberculosis in clinical specimens by DNA sequencing“. Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B2329498X.
Der volle Inhalt der QuelleFord, Christopher Burton. „The Evolution of Drug Resistant Mycobacterium Tuberculosis“. Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10596.
Der volle Inhalt der Quelle梁秀敏 und Sau-man Leung. „Direct detection of rifampin-resistant mycobacterium tuberculosis in clinical specimens by DNA sequencing“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31970102.
Der volle Inhalt der QuelleMuzondiwa, Dillon. „Exploring the evolution of drug resistance in mycobacterium using whole genome sequencing data“. Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/77865.
Der volle Inhalt der QuelleDissertation (MSc)--University of Pretoria, 2019.
Biochemistry
MSc
Unrestricted
Blouin, Yann. „A new scenario for the early evolution of Mycobacterium tuberculosis“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112166/document.
Der volle Inhalt der QuelleMycobacterium tuberculosis, the causative agent of tuberculosis, is a pathogen of world-wide impact. Since its discovery in 1882 by Robert Koch many studies have been focusing on the characteristics of this bacterium and of the most closely related strains known as the Mycobacterium tuberculosis complex (MTBC). In this work we started by studying the closest neighbor to the MTBC, the "Mycobacterium canettii" taxon, which is only found in one particular region of the world, the Horn of Africa. It t has been first identified in the middle of the XXth century as being able to cause tuberculosis in humans, but having at the same time peculiar phenotypic characteristics. Through the study of some phylogenetic markers we have been able to establish that this bacterium does not belong to the MTBC sensu stricto and can therefore be used as an outgroup in order to root the phylogeny to study the emergence of the MTBC. The next step was to study the genetic diversity of a collection of strains of "M. canettii",using the “next generation sequencing” (NGS) approach.. The analysis of this collection, built along the years by the French Army Health Service (SSA), has permitted to show the rapid emergence of a particular clone, as well as to get information enabling to precise the position of the most recent common ancestor (MRCA) of the MTBC. Because of the restricted geographic location of this species, it was also decided to assess the genetic diversity of strains of M. tuberculosis coming from the same part of the globe. This second part of the study, performed on a collection of strains also gathered by the SSA, has lead to the identification of a new, previously unknown, lineage of the MTBC. This discovery has a profound impact on the comprehension of the emergence of M. tuberculosis, as it permits to develop a new model of appearance by interpreting this lineage as the founder ecotype of the MTBC. The evolution of M. tuberculosis can therefore by understood along a path linking "M. canettii", opportunistic pathogen supposedly environmental, and this new lineage. After this proposal of a new model, we tried to date it by extrapolating
Walker, Timothy M. „The role of whole-genome sequencing technology in the control and treatment of Mycobacterium tuberculosis infection“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:f523d3d5-635b-4ae6-8c97-1e52b2cb2537.
Der volle Inhalt der QuelleNaidu, Alecia Geraldine. „Computational characterisation of DNA methylomes in mycobacterium tuberculosis Beijing hyper- and hypo-virulent strains“. University of the Western Cape, 2014. http://hdl.handle.net/11394/4756.
Der volle Inhalt der QuelleMycobacterium tuberculosis, the causative agent of tuberculosis, is estimated to infect approximately one-third of the world’s population and is responsible for around 2 million deaths per year. The disease is endemic in South Africa which has one of the world’s highest tuberculosis incidence and death rates. The M. tuberculosis Beijing genotype are characterised by having an enhanced virulence capability over other M. tuberculosis strains and are the predominant strain observed in the Western Cape of South Africa. DNA methylation is a largely untapped area of research in M.tuberculosis and has been poorly described in the literature especially given its connection to virulence despite it being well characterised along with its role in virulence in other pathogenic bacteria such as E.coli. The overall aim was to characterise a global DNA methylation profile for two M. tuberculosis Beijing strains, hyper-virulent and hypo-virulent, using single molecule real time sequencing data technology. Moreover, to determine if adenine methylation in promoter regions has a possible functional role. This study identified and characterised the DNA methylation profile at the single nucleotide resolution in these strains using Pacific Biosciences single molecule real time sequencing data. A computational approach was used to discern DNA methylation patterns between the hyper and hypo-virulent strains with a view of understanding virulence in the hyper-virulent strain. Methylated motifs, which belong to known Restriction Modification (RM) systems of the H37Rv referencegenome were also identified. N6-methyladenine (m6A) and N4-methlycytosine (m4C) loci were identified in both strains. m6A were idenitified in both strains occuring within the following sequence motifs CACGCAG (Type II RM system), GATNNNNRTAC/GTAYNNNNATC (Type I RM system), while the CTGGAGGA motif was found to be uniquley methylated in the hyper-virulentstrain.Interestingly, the CACGCAG motif was significantly methylated (p = 9.9 x10 -63) at a higher proportion in intergenic regions (~70%) as opposed to genic regions in both the hyper-virulent and hypo-virulent strains suggesting a role in gene regulation. There appeared to be a higher proportion of m6A occuring in intergenic regions compared to within genes for hyper-virulent (61%) and hypo-virulent (62%) strains. The genic proportion revealed that 35% of total m6A occurred uniquely within genes for the hyper-virulent strain while 27.9% for uniquely methylated genes in hypo-virulent strain.
Zimpel, Cristina Kraemer. „Sequenciamento, anotação e análise do genoma completo de Mycobacterium bovis cepa SP38“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/10/10134/tde-25072017-120925/.
Der volle Inhalt der QuelleTuberculosis is an infectious disease caused by bacteria of the Mycobacterium tuberculosisComplex (MTBC) that affects human beings and/or animals. Members of this complex clonally evolved and have high genomic similarity, differentiated by single nucleotide polymorphisms (SNPs) and regions of difference (RDs). Among the animal tuberculosis pathogens, Mycobacterium bovis, the causative agent of bovine tuberculosis, is the MTBC member of greatest global importance. Therefore, the aim of the present study is to sequence, assemble and annotate the genome of the Brazilian strain SP38 of M. bovis, followed by the comparative genomics with other M. bovis genomes available in GenBank. Mycobacterium bovis SP38 has a traditional mycobacteria genome. It has a single and circular chromosome with 4,347,646 bp, high GC content (65.6%), and 4,216 genes, including 154 pseudogenes, 3 rRNA genes (ribosomal RNA), 45 tRNA (transfer RNA), 2 ncRNA (non-coding RNA), 1 tmRNA (transfer-messenger RNA), and 4,011 coding DNA sequences (CDSs) (NZ_CP015773.1). The majority of CDSs (2,805 - 69,93%) was annotated with function and 1,206 (30,07%) are hypothetical. For the comparative genomics analyses, the 31 genomes (complete and drafts) of M. bovis available in GenBank, 32 Mycobacterium bovis BCG and, 23 of Mycobacterium tuberculosis were chosen. In silico analysis of the RDs patterns resulted in the exclusion of three genomes, mistakenly annotated as virulent M. bovis. Orthologous gene analysis suggests that strains of M. bovis are under genomic decay. The quantification of polymorphic sites indicates the greater variability in absolute numbers (8,335 in M. tuberculosis, 3,448 in virulent M. bovis, and 1,088 in M. bovis BCG) and in pairwise comparisons (p≤0,05) of M. tuberculosis compared to virulent M. bovis and M. bovis BCG, suggesting that M. tuberculosis is under high evolutionary pressure. This is in contrast to the fact that M. bovis is capable of infecting a higher number of host species than M. tuberculosis. Most of these polymorphic sites are located in hypothetical CDSs (31.7% - 52.3%), being associated with PE/PPE family, and demonstrating a nonsynonymous mutations proportion of the following increasing order: M. bovis BCG, virulent M. bovis and M. tuberculosis (48.90%, 51.92% and 59.52%, respectively). This lower proportion of nonsynonymous mutations and the dissimilar functional categorization of CDSs with polymorphic sites indicates that M. bovis BCG is subjected to different selective pressure when compared to virulent M. bovis and M. tuberculosis. Finally, the phylogenetic analysis based on polymorphic sites indicates that the phylogenetic grouping of M. bovis is supported by Clonal Complexes (CCs), and not by the host of M. bovis isolates, confirming that polymorphic sites can be used for phylogenetic classification of genetic lineages of this bacterial species. Furthermore, 2/28 (7.14%) genomes of M. bovis could not be classified in the currently described CCs, suggesting the existence of complexes yet to be determined. This study represents the first genome of a Brazilian strain of M. bovis to be completely sequenced and the first comparative genomic analysis of the genomes of this bacterial species.
Köser, Claudio Umberto. „Impact of whole-genome sequencing on the study and clinical diagnosis of drug resistance in the Mycobacterium tuberculosis complex“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608283.
Der volle Inhalt der QuelleBuchteile zum Thema "Mycobacterium tuberculosis sequencing"
Cole, Stewart T., und Douglas R. Smith. „Toward Mapping and Sequencing the Genome of Mycobacterium tuberculosis“. In Tuberculosis, 227–38. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818357.ch16.
Der volle Inhalt der QuelleBrown, Amanda Claire. „Whole-Genome Sequencing of Mycobacterium tuberculosis Directly Samples“. In Methods in Molecular Biology, 459–80. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1460-0_20.
Der volle Inhalt der QuelleVashistha, Himanshu, und K. K. Chopra. „TB Diagnostics: Journey from Smear Microscopy to Whole Genome Sequencing“. In Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions, 419–50. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9413-4_23.
Der volle Inhalt der QuelleBenjak, Andrej, Claudia Sala und Ruben C. Hartkoorn. „Whole-Transcriptome Sequencing for High-Resolution Transcriptomic Analysis in Mycobacterium tuberculosis“. In Methods in Molecular Biology, 17–30. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2450-9_2.
Der volle Inhalt der QuelleBinnicker, Matthew J., Glenn D. Roberts und Nancy L. Wengenack. „Mycobacterial and Fungal Diagnostics“. In Mayo Clinic Infectious Diseases Board Review, 41–52. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199827626.003.0004.
Der volle Inhalt der QuelleDidkowska, Anna, Monika Krajewska-Wędzina, Blanka Orłowska, Monika Kozińska, Ewa Augustynowicz-Kopeć und Krzysztof Anusz. „Molecular Characterization of Mycobacterium spp. Isolated from Cattle and Wildlife in Poland“. In Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96695.
Der volle Inhalt der QuellePouseele, Hannes, und Philip Supply. „Accurate Whole-Genome Sequencing-Based Epidemiological Surveillance of Mycobacterium Tuberculosis“. In Methods in Microbiology, 359–94. Elsevier, 2015. http://dx.doi.org/10.1016/bs.mim.2015.04.001.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mycobacterium tuberculosis sequencing"
Nimmo, C., D. Ramsuran, K. Brien, A. Steyn und J. Breuer. „Whole Genome Sequencing Mycobacterium Tuberculosis Directly from FFPE Lung Reveals Within-Lung Diversity“. In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a6091.
Der volle Inhalt der QuelleBraganza Menezes, Darryl, Sebastian Lugg, Gemma Hawthorne, Esther Robinson und Martin Dedicoat. „A case series of pyrazinamide mono-resistant mycobacterium tuberculosis using whole genome sequencing for diagnosis and cluster linkage.“ In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa4755.
Der volle Inhalt der QuelleDymova, Maya, Olga Alkhovik, Lubov Evdokimova, Andrey Cherednichenko, Tatjana Petrenko und Yana Batyrshina. „Whole genome-sequencing of non-tuberculous mycobacteria“. In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa891.
Der volle Inhalt der Quelle