Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Muscle-brain axis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Muscle-brain axis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Muscle-brain axis"
Sikiric, Predrag, Slaven Gojkovic, Ivan Krezic, Ivan Maria Smoday, Luka Kalogjera, Helena Zizek, Katarina Oroz et al. „Stable Gastric Pentadecapeptide BPC 157 May Recover Brain–Gut Axis and Gut–Brain Axis Function“. Pharmaceuticals 16, Nr. 5 (30.04.2023): 676. http://dx.doi.org/10.3390/ph16050676.
Der volle Inhalt der QuelleSanjay Kalra, Saurabh Arora und Nitin Kapoor. „The Mood-Muscle Meta Bridge (Brain Muscle Axis)“. Journal of the Pakistan Medical Association 74, Nr. 4 (11.02.2024): 589–90. http://dx.doi.org/10.47391/jpma.24-16.
Der volle Inhalt der QuelleBurtscher, Johannes, Grégoire P. Millet, Nicolas Place, Bengt Kayser und Nadège Zanou. „The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection“. International Journal of Molecular Sciences 22, Nr. 12 (17.06.2021): 6479. http://dx.doi.org/10.3390/ijms22126479.
Der volle Inhalt der QuelleArosio, Beatrice, Riccardo Calvani, Evelyn Ferri, Hélio José Coelho-Junior, Angelica Carandina, Federica Campanelli, Veronica Ghiglieri, Emanuele Marzetti und Anna Picca. „Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle–Brain Axis“. Nutrients 15, Nr. 8 (12.04.2023): 1853. http://dx.doi.org/10.3390/nu15081853.
Der volle Inhalt der QuellePrzewłócka, Katarzyna, Daria Korewo-Labelle, Paweł Berezka, Mateusz Jakub Karnia und Jan Jacek Kaczor. „Current Aspects of Selected Factors to Modulate Brain Health and Sports Performance in Athletes“. Nutrients 16, Nr. 12 (12.06.2024): 1842. http://dx.doi.org/10.3390/nu16121842.
Der volle Inhalt der QuelleSaponaro, Federica, Andrea Bertolini, Riccardo Baragatti, Leonardo Galfo, Grazia Chiellini, Alessandro Saba und Giuseppina D’Urso. „Myokines and Microbiota: New Perspectives in the Endocrine Muscle–Gut Axis“. Nutrients 16, Nr. 23 (25.11.2024): 4032. http://dx.doi.org/10.3390/nu16234032.
Der volle Inhalt der QuelleLiu, Tingting, Haojie Wu, Jingwen Li, Chaoyang Zhu und Jianshe Wei. „Unraveling the Bone–Brain Axis: A New Frontier in Parkinson’s Disease Research“. International Journal of Molecular Sciences 25, Nr. 23 (29.11.2024): 12842. http://dx.doi.org/10.3390/ijms252312842.
Der volle Inhalt der QuelleCutuli, Debora, Davide Decandia, Giacomo Giacovazzo und Roberto Coccurello. „Physical Exercise as Disease-Modifying Alternative against Alzheimer’s Disease: A Gut–Muscle–Brain Partnership“. International Journal of Molecular Sciences 24, Nr. 19 (28.09.2023): 14686. http://dx.doi.org/10.3390/ijms241914686.
Der volle Inhalt der QuelleManti, Sara, Federica Xerra, Giulia Spoto, Ambra Butera, Eloisa Gitto, Gabriella Di Rosa und Antonio Gennaro Nicotera. „Neurotrophins: Expression of Brain–Lung Axis Development“. International Journal of Molecular Sciences 24, Nr. 8 (11.04.2023): 7089. http://dx.doi.org/10.3390/ijms24087089.
Der volle Inhalt der QuelleIgual Gil, Carla, Bethany M. Coull, Wenke Jonas, Rachel N. Lippert, Susanne Klaus und Mario Ost. „Mitochondrial stress-induced GFRAL signaling controls diurnal food intake and anxiety-like behavior“. Life Science Alliance 5, Nr. 11 (06.09.2022): e202201495. http://dx.doi.org/10.26508/lsa.202201495.
Der volle Inhalt der QuelleDissertationen zum Thema "Muscle-brain axis"
Cao, Jingxian. „Brain-Derived Neurotrophic Factor (BDNF) as a diagnostic and prognostic biomarker in anorexia nervosa“. Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5290.
Der volle Inhalt der QuelleAnorexia nervosa (AN) is a multifaceted eating disorder marked by severe caloric restriction, extreme weight loss, and distorted body image. This thesis investigates the role of brain-derived neurotrophic factor (BDNF) in AN through the lens of neurobiological, metabolic, and psychological factors. Using a chronic animal model, the research examines how BDNF signaling intersects with reward and cognitive circuits, as well as its implications for the muscle-brain axis and the role of other neurotrophins in AN. Chapter 1 delves into the neurobiological and metabolic dimensions of AN. It focuses on how BDNF signaling dynamics are affected by chronic restriction, refeeding, and binge behaviors, specifically within brain structures associated with reward and cognitive circuits. Utilizing a chronic animal model, this chapter explores alterations in BDNF signaling across key brain regions, including the dorsal striatum (DS), prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA). It examines how these changes impact reward processing, cognitive functions, and overall metabolic homeostasis in the context of AN. The chapter also addresses the broader implications of these findings for understanding the neurobiological underpinnings of the disorder and its treatment. Chapter 2 investigates the dynamics of BDNF signaling and its relationship with genes implicated in the muscle-brain axis. This chapter examines how BDNF interacts with both rapid and slow muscle fibers and explores the connections between muscle and key brain regions, including the hippocampus and hypothalamus. The research highlights how these interactions influence neurobiological and metabolic processes in AN. By elucidating the role of BDNF in muscle-brain communication, this chapter contributes to a deeper understanding of the physiological mechanisms underlying AN and their potential implications for treatment strategies. Chapter 3 explores the role of other neurotrophins, specifically NTF3, NTF5, and NGF, in brain regions associated with AN. This chapter investigates how these neurotrophins are regulated and their impact on AN-related brain structures. By examining the expression and function of NTF3, NTF5, and NGF, the research provides insights into their contributions to the neurobiological processes underlying AN
Bücher zum Thema "Muscle-brain axis"
Straub, Rainer H. Neuroendocrine system. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0022.
Der volle Inhalt der QuelleStraub, Rainer H. Neuroendocrine system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199642489.003.0022_update_002.
Der volle Inhalt der QuelleStraub, Rainer H. Neuroendocrine system. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199642489.003.0022_update_003.
Der volle Inhalt der QuelleKleiner, Susan M., und Maggie Greenwood-Robinson. The New Power Eating. Human Kinetics, 2019. http://dx.doi.org/10.5040/9781718214101.
Der volle Inhalt der QuelleBuchteile zum Thema "Muscle-brain axis"
Daneshzand, Mohammad, Lucia I. Navarro de Lara, Qinglei Meng, Sergey Makarov, Işıl Uluç, Jyrki Ahveninen, Tommi Raij und Aapo Nummenmaa. „Experimental Verification of a Computational Real-Time Neuronavigation System for Multichannel Transcranial Magnetic Stimulation“. In Brain and Human Body Modelling 2021, 61–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_4.
Der volle Inhalt der QuelleSchlegel, Petr, Michal Novotny, Blanka Klimova und Martin Valis. „“Muscle-Gut-Brain Axis”: Can Physical Activity Help Patients with Alzheimer’s Disease Due to Microbiome Modulation?“ In Advances in Alzheimer’s Disease. IOS Press, 2022. http://dx.doi.org/10.3233/aiad220006.
Der volle Inhalt der QuelleStraub, Rainer H. „Neuroendocrine system and chronic autoimmune rheumatic diseases“. In Oxford Textbook of Rheumatology, 162–71. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0022_update_004.
Der volle Inhalt der QuelleA. Ochola, Lucy, und Eric M. Guantai. „Prevention of Hyperglycemia“. In Metformin - Pharmacology and Drug Interactions. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99342.
Der volle Inhalt der QuelleAtkinson, Martin E. „Introduction and surface anatomy“. In Anatomy for Dental Students. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199234462.003.0029.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Muscle-brain axis"
Pasha, Y., S. Taylor-Robinson, R. Leech, I. Ribeiro, N. Cook, M. Crossey und H. Marcinkowski. „PWE-091 L-ornithine L-aspartate in minimal hepatic encephalopathy: possible effects on the brain-muscle axis?“ In British Society of Gastroenterology, Annual General Meeting, 4–7 June 2018, Abstracts. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2018. http://dx.doi.org/10.1136/gutjnl-2018-bsgabstracts.233.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Muscle-brain axis"
Funkenstein, Bruria, und Shaojun (Jim) Du. Interactions Between the GH-IGF axis and Myostatin in Regulating Muscle Growth in Sparus aurata. United States Department of Agriculture, März 2009. http://dx.doi.org/10.32747/2009.7696530.bard.
Der volle Inhalt der QuelleFunkenstein, Bruria, und Cunming Duan. GH-IGF Axis in Sparus aurata: Possible Applications to Genetic Selection. United States Department of Agriculture, November 2000. http://dx.doi.org/10.32747/2000.7580665.bard.
Der volle Inhalt der Quelle