Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multivariate stationary process“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multivariate stationary process" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multivariate stationary process"
MBEKE, Kévin Stanislas, und Ouagnina Hili. „Estimation of a stationary multivariate ARFIMA process“. Afrika Statistika 13, Nr. 3 (01.10.2018): 1717–32. http://dx.doi.org/10.16929/as/1717.130.
Der volle Inhalt der QuelleCheng, R., und M. Pourahmadi. „The mixing rate of a stationary multivariate process“. Journal of Theoretical Probability 6, Nr. 3 (Juli 1993): 603–17. http://dx.doi.org/10.1007/bf01066720.
Der volle Inhalt der QuelleLatour, Alain. „The Multivariate Ginar(p) Process“. Advances in Applied Probability 29, Nr. 1 (März 1997): 228–48. http://dx.doi.org/10.2307/1427868.
Der volle Inhalt der QuelleLatour, Alain. „The Multivariate Ginar(p) Process“. Advances in Applied Probability 29, Nr. 01 (März 1997): 228–48. http://dx.doi.org/10.1017/s0001867800027865.
Der volle Inhalt der QuelleSun, Ying, Ning Su und Yue Wu. „Multivariate stationary non-Gaussian process simulation for wind pressure fields“. Earthquake Engineering and Engineering Vibration 15, Nr. 4 (18.11.2016): 729–42. http://dx.doi.org/10.1007/s11803-016-0361-x.
Der volle Inhalt der QuelleBorovkov, K., und G. Last. „On Rice's Formula for Stationary Multivariate Piecewise Smooth Processes“. Journal of Applied Probability 49, Nr. 02 (Juni 2012): 351–63. http://dx.doi.org/10.1017/s002190020000913x.
Der volle Inhalt der QuelleZhang, Zhengjun, und Richard L. Smith. „The behavior of multivariate maxima of moving maxima processes“. Journal of Applied Probability 41, Nr. 4 (Dezember 2004): 1113–23. http://dx.doi.org/10.1239/jap/1101840556.
Der volle Inhalt der QuelleZhang, Zhengjun, und Richard L. Smith. „The behavior of multivariate maxima of moving maxima processes“. Journal of Applied Probability 41, Nr. 04 (Dezember 2004): 1113–23. http://dx.doi.org/10.1017/s0021900200020878.
Der volle Inhalt der QuelleBorovkov, K., und G. Last. „On Rice's Formula for Stationary Multivariate Piecewise Smooth Processes“. Journal of Applied Probability 49, Nr. 2 (Juni 2012): 351–63. http://dx.doi.org/10.1239/jap/1339878791.
Der volle Inhalt der QuelleGordy, Michael B. „Finite-Dimensional Distributions of a Square-Root Diffusion“. Journal of Applied Probability 51, Nr. 4 (Dezember 2014): 930–42. http://dx.doi.org/10.1239/jap/1421763319.
Der volle Inhalt der QuelleDissertationen zum Thema "Multivariate stationary process"
Biron, Matthieu Etienne. „Prediction and estimation for multivariate stationary time series models“. Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341888.
Der volle Inhalt der QuelleBoulin, Alexis. „Partitionnement des variables de séries temporelles multivariées selon la dépendance de leurs extrêmes“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5039.
Der volle Inhalt der QuelleIn a wide range of applications, from climate science to finance, extreme events with a non-negligible probability can occur, leading to disastrous consequences. Extremes in climatic events such as wind, temperature, and precipitation can profoundly impact humans and ecosystems, resulting in events like floods, landslides, or heatwaves. When the focus is on studying variables measured over time at numerous specific locations, such as the previously mentioned variables, partitioning these variables becomes essential to summarize and visualize spatial trends, which is crucial in the study of extreme events. This thesis explores several models and methods for partitioning the variables of a multivariate stationary process, focusing on extreme dependencies.Chapter 1 introduces the concepts of modeling dependence through copulas, which are fundamental for extreme dependence. The notion of regular variation, essential for studying extremes, is introduced, and weakly dependent processes are discussed. Partitioning is examined through the paradigms of separation-proximity and model-based clustering. Non-asymptotic analysis is also addressed to evaluate our methods in fixed dimensions.Chapter 2 study the dependence between maximum values is crucial for risk analysis. Using the extreme value copula function and the madogram, this chapter focuses on non-parametric estimation with missing data. A functional central limit theorem is established, demonstrating the convergence of the madogram to a tight Gaussian process. Formulas for asymptotic variance are presented, illustrated by a numerical study.Chapter 3 proposes asymptotically independent block (AI-block) models for partitioning variables, defining clusters based on the independence of maxima. An algorithm is introduced to recover clusters without specifying their number in advance. Theoretical efficiency of the algorithm is demonstrated, and a data-driven parameter selection method is proposed. The method is applied to neuroscience and environmental data, showcasing its potential.Chapter 4 adapts partitioning techniques to analyze composite extreme events in European climate data. Sub-regions with dependencies in extreme precipitation and wind speed are identified using ERA5 data from 1979 to 2022. The obtained clusters are spatially concentrated, offering a deep understanding of the regional distribution of extremes. The proposed methods efficiently reduce data size while extracting critical information on extreme events.Chapter 5 proposes a new estimation method for matrices in a latent factor linear model, where each component of a random vector is expressed by a linear equation with factors and noise. Unlike classical approaches based on joint normality, we assume factors are distributed according to standard Fréchet distributions, allowing a better description of extreme dependence. An estimation method is proposed, ensuring a unique solution under certain conditions. An adaptive upper bound for the estimator is provided, adaptable to dimension and the number of factors
Buchteile zum Thema "Multivariate stationary process"
Masry, Elias. „Multivariate Probability Density and Regression Functions Estimation of Continuous-Time Stationary Processes from Discrete-Time Data“. In Stochastic Processes and Related Topics, 297–314. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2030-5_17.
Der volle Inhalt der QuelleDorndorf, Alexander, Boris Kargoll, Jens-André Paffenholz und Hamza Alkhatib. „Bayesian Robust Multivariate Time Series Analysis in Nonlinear Regression Models with Vector Autoregressive and t-Distributed Errors“. In International Association of Geodesy Symposia. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/1345_2023_210.
Der volle Inhalt der QuelleMerlevède, Florence, Magda Peligrad und Sergey Utev. „Gaussian Approximation under Asymptotic Negative Dependence“. In Functional Gaussian Approximation for Dependent Structures, 277–302. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198826941.003.0009.
Der volle Inhalt der QuelleArnold, Stevan J. „Evolution of Multiple Traits on a Stationary Adaptive Landscape“. In Evolutionary Quantitative Genetics, 236–60. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780192859389.003.0014.
Der volle Inhalt der QuelleFranses, Philip Hans. „Periodic Cointegration“. In Periodicity and Stochastic Trends In Economic Time Series, 177–210. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198774532.003.0009.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multivariate stationary process"
Stefanakos, Christos N., und Konstandinos A. Belibassakis. „Nonstationary Stochastic Modelling of Multivariate Long-Term Wind and Wave Data“. In ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2005. http://dx.doi.org/10.1115/omae2005-67461.
Der volle Inhalt der QuelleWang, Junzhe, Shyam Kareepadath Sajeev, Evren Ozbayoglu, Silvio Baldino, Yaxin Liu und Haorong Jing. „Reducing NPT Using a Novel Approach to Real-Time Drilling Data Analysis“. In SPE Annual Technical Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/215028-ms.
Der volle Inhalt der QuelleJosupeit, Judith. „Does Pinocchio get Cybersickness? The Mitigating Effect of a Virtual Nose on Cybersickness“. In AHFE 2023 Hawaii Edition. AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1004445.
Der volle Inhalt der QuelleYang, Yingnan, Qingling Zhu und Jianyong Chen. „VCformer: Variable Correlation Transformer with Inherent Lagged Correlation for Multivariate Time Series Forecasting“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/590.
Der volle Inhalt der QuelleTopchii, M., A. Bondarev und A. Degterev. „New Approach for the Probabilistic Assessment of Organic Matter in the Source Rocks of the Bazhenov Formation for Estimation of Shale Hydrocarbons Resources“. In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216937-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Multivariate stationary process"
Miamee, A. G., und M. Pourahmadi. Degenerate Multivariate Stationary Processes: Basicity, Past and Future, and Autoregressive Representation. Fort Belvoir, VA: Defense Technical Information Center, Mai 1985. http://dx.doi.org/10.21236/ada158879.
Der volle Inhalt der QuelleMiamee, A. G. On Determining the Predictor of Non-Full-Rank Multivariate Stationary Random Processes. Fort Belvoir, VA: Defense Technical Information Center, März 1985. http://dx.doi.org/10.21236/ada159165.
Der volle Inhalt der Quelle