Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multivariate depth“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multivariate depth" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multivariate depth"
Bern und Eppstein. „Multivariate Regression Depth“. Discrete & Computational Geometry 28, Nr. 1 (Juli 2002): 1–17. http://dx.doi.org/10.1007/s00454-001-0092-1.
Der volle Inhalt der QuelleClaeskens, Gerda, Mia Hubert, Leen Slaets und Kaveh Vakili. „Multivariate Functional Halfspace Depth“. Journal of the American Statistical Association 109, Nr. 505 (02.01.2014): 411–23. http://dx.doi.org/10.1080/01621459.2013.856795.
Der volle Inhalt der QuelleVencálek, Ondřej. „Depth-based Classification for Multivariate Data“. Austrian Journal of Statistics 46, Nr. 3-4 (12.04.2017): 117–28. http://dx.doi.org/10.17713/ajs.v46i3-4.677.
Der volle Inhalt der QuelleIeva, Francesca, und Anna M. Paganoni. „Depth Measures for Multivariate Functional Data“. Communications in Statistics - Theory and Methods 42, Nr. 7 (April 2013): 1265–76. http://dx.doi.org/10.1080/03610926.2012.746368.
Der volle Inhalt der QuelleCascos, Ignacio, und Ilya Molchanov. „Multivariate risks and depth-trimmed regions“. Finance and Stochastics 11, Nr. 3 (15.05.2007): 373–97. http://dx.doi.org/10.1007/s00780-007-0043-7.
Der volle Inhalt der QuelleTat, Samaneh, und Mohammad Reza Faridrohani. „Predicting depth value of the future depth-based multivariate record“. Communications for Statistical Applications and Methods 30, Nr. 5 (30.09.2023): 453–65. http://dx.doi.org/10.29220/csam.2023.30.5.453.
Der volle Inhalt der QuelleMuthukrishnan, R., und Surabhi S. Nair. „Computing Robust Measure of Location on Multivariate Statistical Data Using Euclidean Depth Procedures“. Indian Journal Of Science And Technology 16, Nr. 26 (23.07.2023): 1927–34. http://dx.doi.org/10.17485/ijst/v16i26.847.
Der volle Inhalt der QuelleHe, Xuming, und Gang Wang. „Convergence of depth contours for multivariate datasets“. Annals of Statistics 25, Nr. 2 (April 1997): 495–504. http://dx.doi.org/10.1214/aos/1031833661.
Der volle Inhalt der QuelleTsao, Min. „An empirical depth function for multivariate data“. Statistics & Probability Letters 83, Nr. 1 (Januar 2013): 213–18. http://dx.doi.org/10.1016/j.spl.2012.09.007.
Der volle Inhalt der QuelleRomanazzi, Mario. „Data depth, random simplices and multivariate dispersion“. Statistics & Probability Letters 79, Nr. 12 (Juni 2009): 1473–79. http://dx.doi.org/10.1016/j.spl.2009.03.022.
Der volle Inhalt der QuelleDissertationen zum Thema "Multivariate depth"
Beltran, Luis. „NONPARAMETRIC MULTIVARIATE STATISTICAL PROCESS CONTROL USING PRINCIPAL COMPONENT ANALYSIS AND SIMPLICIAL DEPTH“. Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4080.
Der volle Inhalt der QuellePh.D.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering and Management Systems
Lee, Joanna L. S. „Time-of-flight secondary ion mass spectrometry - fundamental issues for quantitative measurements and multivariate data analysis“. Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:f0e4b8ff-f563-429e-9e71-9c277a5139c4.
Der volle Inhalt der QuelleArmaut, Elisabeth. „Estimation d'ensembles de niveau d'une fonction de profondeur pour des données fonctionnelles. Applications au clustering et à la théorie du risque“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5021.
Der volle Inhalt der QuelleStatistical depth functions play a fundamental role in analyzing and characterizing complex data structures. Depth functions provide a measure of centrality or outlyingness for individual observations or entire datasets, aiding in the understanding of their relative positions and underlying distributions. The concepts related to depth, as found in the literature, originate from the notion of Tukey's depth, also known as the median depth. This concept was introduced by the statistician John W. Tukey in his article titled "Mathematics and the Picturing of Data," published in 1975 [170]. The fundamental idea underlying Tukey's depth is to generalize the univariate median of a one-dimensional dataset in higher dimension. First, our interest focuses on multivariate depths followed by functional depths, both of which we build an overall review within Chapter 1. In the second part of this thesis, i.e. in Chapter 2, we undertake a rigorous study of multivariate depth-level sets and establish several analytical and statistical properties. First, we show that, when the underlying multivariate depth is smooth enough, then the symmetric difference between the estimated depth-level set and its theoretical counterpart converges to zero in terms of the d-dimensional volume and of the probability under the unknown distribution. Apart from these contributions, the novelty of Chapter 2 is the introduction and study of a depth-based risk measure called the Covariate-Conditional- Tail-Expectation (CCTE), within a risk theory setup. Roughly, the CCTE aims at computing an average cost knowing that at least one of the risk factors at hand is 'high' in some direction. The latter risk area is modelled by a level-set of low depth value. In contrast to risk measures based on distribution tails, our definition of CCTE is direction-free, owing to the involvement of depth level sets. We establish that, as the sample size goes to infinity the empirical depth-based CCTE is consistent for its theoretical version. We demonstrate consistency and provide rates of convergence for the depth- CCTE, for fixed levels of risk as well as when the risk level goes to zero as the sample size goes to infinity. In this last case of study, we also analyze the behavior of the original CCTE definition based on a distribution function, a case that was not studied in [56]. On top of several simulations performed on the CCTE, we illustrate its usefulness on environmental data.The final part of this thesis, Chapter 3, wraps up our work in which we contribute to defining a new type of depth for functional data based on functional principal component analysis. This includes using a generic multivariate depth. In this view, we use the well known Karhunen-Loève decomposition as a tool to project a centered square-integrable random process along some finite linear combination of orthogonal functions called the principal components. To the best of our knowledge, this is a novel approach in the functional depth literature. In this extent, we involve a multivariate depth function for the vector of the projected principal components. Naturally, we provide an estimator of our functional depth for which we demonstrate uniform consistency with a rate of convergence. We complement our study with several simulations and real data applications to functional classification, where our new depth equals or outperforms most of conventional competitors
Baffoe, Nana Ama Appiaa. „Diagnostic Tools for Forecast Ensembles“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522964882574611.
Der volle Inhalt der QuelleCantu, Alma. „Proposition de modes de visualisation et d'interaction innovants pour les grandes masses de données et/ou les données structurées complexes en prenant en compte les limitations perceptives des utilisateurs“. Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0068/document.
Der volle Inhalt der QuelleAs a result of the improvement of data capture and storage, recent years have seen the amount of data to be processed increase dramatically. Many studies, ranging from automatic processing to information visualization, have been performed, but some areas are still too specific to take advantage of. This is the case of ELectromagnetic INTelligence(ELINT). This domain does not only deal with a huge amount of data but also has to handle complex data and usage as well as populations of users with less and less experience. In this thesis we focus on the use of existing and new technologies applied to visualization to propose solutions to the combination of issues such as huge amount and complex data. We begin by presenting an analysis of the ELINT field which made it possible to extract the issues that it must faces. Then, we focus on the visual solutions handling the combinations of such issues but the existing work do not contain directly such solutions. Therefore, we focus on the description of visual issues and propose a characterization of these issues. This characterization allows us to describe the existing representations and to build a recommendation tool based on how the existing work solves the issues. Finally, we focus on identifying new metaphors to complete the existing work and propose an immersive representation to solve the issues of ELINT. These contributions make it possible to analyze and use the existing and deepen the use of immersive representations for the visualization of information
Dogra, Jody A. Busch Kenneth W. Busch Marianna A. „Multivariate analyses of near-infrared and UV spectral data“. Waco, Tex. : Baylor University, 2009. http://hdl.handle.net/2104/5347.
Der volle Inhalt der QuelleCarvalho, Aline Roberta de. „Atributos do solo associados às variações na vegetação em fragmento de cerrado, Assis, SP“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-09022009-152200/.
Der volle Inhalt der QuelleThe objective of the present work is to analyze correlation the correlation between environmental variables and tree species distribution. The study was developed in a permanent plot of 320 x 320 m, in a cerrado fragment, located at Assis Ecological Station, Assis County, São Paulo. Soil samples were collected at five sites in a pedosequence, and submitted to chemical, physical and micromorphological analysis. The vegetation was sampled within 314 m2 area around each site where the soil sample was collected. All alive trees which diameter at breast height was equal or higher than 4,8 cm and perimeter at the breast height was equal or superior to 15 cm, were considered. To analyze the data bank, three multivariate techniques analysis were used: principal component analysis (PCA), to environment variables; certificated correspondent analysis (DCA), to floristic variables; and canonic correspondent analysis (CCA), to verify a possible association between two variables. The principal component analysis demonstrated that the majority of variables presented similar correlation within superficial layers (0-20 and 20-60 cm). This trend was not the same for the other layers (60-80 and > 80 cm), suggesting more changes in soil profile with soil depth. The correspondence canonic analysis showed to be reliable to demonstrate standard distribution of species in relation to environmental variables for fragment, characterized by soil physical and chemical attributes. But, the key character was the soil water regime, suggesting that the water availability had strong influence over species distributions.
Salawu, Emmanuel Oluwatobi. „Spatiotemporal Variations in Coexisting Multiple Causes of Death and the Associated Factors“. ScholarWorks, 2018. https://scholarworks.waldenu.edu/dissertations/6108.
Der volle Inhalt der QuelleChih-TingHsieh und 謝芝庭. „Multivariate Process Capability Index Based on Data Depth Concept“. Thesis, 2017. http://ndltd.ncl.edu.tw/handle/2cw2p6.
Der volle Inhalt der Quelle國立成功大學
統計學系
105
Generally, an industrial product has more than one quality characteristic. In order to establish performance measures for evaluating the capability of a multivariate manufacturing process, several multivariate process capability indices have been developed in the past. Most of the proposed in the literature MPCIs are defined under an assumption, that process quality characteristics are normally distributed. However, this assumption may not hold in practice In this research, based on the data depth concept, we proposed two multivariate process capability indices, which could be used regardless on data distribution. Finally, simulation results show that our proposed indices outperform than existing model. A numerical example further demonstrate the usefulness of the proposed indices.
Kong, Linglong. „On Multivariate Quantile Regression: Directional Approach and Application with Growth Charts“. Phd thesis, 2009. http://hdl.handle.net/10048/462.
Der volle Inhalt der QuelleTitle from pdf file main screen (viewed on July 21, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Statistics, Department of Mathematical and Statistical Sciences, University of Alberta." Includes bibliographical references.
Bücher zum Thema "Multivariate depth"
Mosler, Karl. Multivariate Dispersion, Central Regions, and Depth. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0045-8.
Der volle Inhalt der QuelleY, Liu Regina, Serfling Robert J und Souvaine Diane L, Hrsg. Data depth: Robust multivariate analysis, computational geometry, and applications. New York: American Mathematical Society, 2006.
Den vollen Inhalt der Quelle findenKosiorowski, Daniel. Statystyczne funkcje głębi w odpornej analizie ekonomicznej: The statistical functions of depth in robust economic analysis. Kraków: Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, 2012.
Den vollen Inhalt der Quelle findenMultivariate Dispersion, Central Regions, and Depth. Springer, 2002.
Den vollen Inhalt der Quelle findenMosler, Karl. Multivariate Dispersion, Central Regions, and Depth. Springer, 2011.
Den vollen Inhalt der Quelle findenMosler, Karl. Multivariate Dispersion, Central Regions, and Depth: The Lift Zonoid Approach. Springer London, Limited, 2012.
Den vollen Inhalt der Quelle findenBaillo, Amparo, Antonio Cuevas und Ricardo Fraiman. Classification methods for functional data. Herausgegeben von Frédéric Ferraty und Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.10.
Der volle Inhalt der QuelleMüller, Wolfgang C., und Paul W. Thurner, Hrsg. The Politics of Nuclear Energy in Western Europe. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198747031.001.0001.
Der volle Inhalt der QuelleSobczyk, Eugeniusz Jacek. Uciążliwość eksploatacji złóż węgla kamiennego wynikająca z warunków geologicznych i górniczych. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, 2022. http://dx.doi.org/10.33223/onermin/0222.
Der volle Inhalt der QuelleBuchteile zum Thema "Multivariate depth"
Mosler, Karl. „Data depth“. In Multivariate Dispersion, Central Regions, and Depth, 105–31. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0045-8_4.
Der volle Inhalt der QuelleMosler, Karl. „Depth of hyperplanes“. In Multivariate Dispersion, Central Regions, and Depth, 165–79. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0045-8_6.
Der volle Inhalt der QuelleSerfling, Robert. „Depth functions in nonparametric multivariate inference“. In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1–16. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/dimacs/072/01.
Der volle Inhalt der QuelleFraiman, Ricardo, Regina Y. Liu und Jean Meloche. „Multivariate density estimation by probing depth“. In Institute of Mathematical Statistics Lecture Notes - Monograph Series, 415–30. Hayward, CA: Institute of Mathematical Statistics, 1997. http://dx.doi.org/10.1214/lnms/1215454155.
Der volle Inhalt der QuelleMosler, Karl. „Introduction“. In Multivariate Dispersion, Central Regions, and Depth, 1–24. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0045-8_1.
Der volle Inhalt der QuelleMosler, Karl. „Zonoids and lift zonoids“. In Multivariate Dispersion, Central Regions, and Depth, 25–78. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0045-8_2.
Der volle Inhalt der QuelleMosler, Karl. „Central regions“. In Multivariate Dispersion, Central Regions, and Depth, 79–104. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0045-8_3.
Der volle Inhalt der QuelleDykerhoff, Rainer. „Inference based on data depth by Rainer Dyckerhoff“. In Multivariate Dispersion, Central Regions, and Depth, 133–63. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0045-8_5.
Der volle Inhalt der QuelleMosler, Karl. „Volume statistics“. In Multivariate Dispersion, Central Regions, and Depth, 181–206. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0045-8_7.
Der volle Inhalt der QuelleMosler, Karl. „Orderings and indices of dispersion“. In Multivariate Dispersion, Central Regions, and Depth, 207–28. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0045-8_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multivariate depth"
Bern, Marshall, und David Eppstein. „Multivariate regression depth“. In the sixteenth annual symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/336154.336218.
Der volle Inhalt der QuelleEduardo Miranda Cunha, Paulo, und Eduardo Filpo Ferreira da Silva. „Time To Depth Conversion By Multivariate Mapping“. In 7th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2001. http://dx.doi.org/10.3997/2214-4609-pdb.217.269.
Der volle Inhalt der QuelleRongen, Guus, und Ben Throssell. „Schematizing Rainfall Events with Multivariate Depth-Duration Dependence“. In 33rd European Safety and Reliability Conference. Singapore: Research Publishing Services, 2023. http://dx.doi.org/10.3850/978-981-18-8071-1_p727-cd.
Der volle Inhalt der QuelleLiu, Ce, Suryansh Kumar, Shuhang Gu, Radu Timofte und Luc Van Gool. „Single Image Depth Prediction Made Better: A Multivariate Gaussian Take“. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.01664.
Der volle Inhalt der QuelleYao, Yuan, und Norbert J. Pelc. „Multivariate Gaussian model based Cramér-Rao lower bound evaluation of the in-depth PCXD“. In SPIE Medical Imaging, herausgegeben von Christoph Hoeschen, Despina Kontos und Thomas G. Flohr. SPIE, 2015. http://dx.doi.org/10.1117/12.2082111.
Der volle Inhalt der QuelleXiao, G., Y. Li, B. Jiang, X. Duan und Y. Li. „Multivariate Constraints Time-Depth Conversion Method Based On Velocity Tomography and Application in Bohai K Oilfield“. In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800993.
Der volle Inhalt der QuelleVasconcelos, Israel L. C., und André L. L. Aquino. „Multivariate Modeling to handle Urban Air Pollution Data observed trough Vehicular Sensor Networks“. In Simpósio Brasileiro de Computação Ubíqua e Pervasiva. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/sbcup.2021.16011.
Der volle Inhalt der QuelleRaghupathi, Laks, David Randell, Kevin Ewans und Philip Jonathan. „Non-Stationary Estimation of Joint Design Criteria With a Multivariate Conditional Extremes Approach“. In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54355.
Der volle Inhalt der QuelleMercelis, Peter, Marc Dufour, Ariel Alvarez Gebelin, Vincent Gruwez, Sarah Doorme, Marc Sas und Gert Leyssen. „Generation of Multivariate Wave Conditions as Input for a Probabilistic Level III Breakwater Design“. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24143.
Der volle Inhalt der QuelleSpeed, Jonathon. „Demystifying chemometrics: how multivariate analysis allows spectroscopy to be used to solve most analytical problems“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/pkrn4677.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Multivariate depth"
Rivera, Dion Arledge, und Mary Kathleen Alam. Use of step scan FT-IR and multivariate curve resolution to understand aging of propellant binder as a function of depth into the polymer material. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/918316.
Der volle Inhalt der QuelleSánchez-Páez, David A. Effects of income inequality on COVID-19 infections and deaths during the first wave of the pandemic: Evidence from European countries. Verlag der Österreichischen Akademie der Wissenschaften, August 2021. http://dx.doi.org/10.1553/populationyearbook2022.res1.1.
Der volle Inhalt der Quelle