Zeitschriftenartikel zum Thema „Multivalent-Ion“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Multivalent-Ion" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Iton, Zachery W. B., and Kimberly A. See. "Multivalent Ion Conduction in Inorganic Solids." Chemistry of Materials 34, no. 3 (2022): 881–98. http://dx.doi.org/10.1021/acs.chemmater.1c04178.
Der volle Inhalt der QuelleProffit, Danielle L., Albert L. Lipson, Baofei Pan, et al. "Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells." MRS Proceedings 1773 (2015): 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Der volle Inhalt der QuelleRutt, Ann, and Kristin A. Persson. "Expanding the Materials Search Space for Multivalent Cathodes." ECS Meeting Abstracts MA2022-02, no. 4 (2022): 446. http://dx.doi.org/10.1149/ma2022-024446mtgabs.
Der volle Inhalt der QuelleDong, Liubing, Wang Yang, Wu Yang, Yang Li, Wenjian Wu, and Guoxiu Wang. "Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors." Journal of Materials Chemistry A 7, no. 23 (2019): 13810–32. http://dx.doi.org/10.1039/c9ta02678a.
Der volle Inhalt der QuelleHasnat, Abul, and Vinay A. Juvekar. "Dynamics of ion-exchange involving multivalent cations." Chemical Engineering Science 52, no. 14 (1997): 2439–42. http://dx.doi.org/10.1016/s0009-2509(97)00047-x.
Der volle Inhalt der QuelleKC, Bilash, Jinglong Guo, Robert Klie, et al. "TEM Analysis of Multivalent Ion Battery Cathode." Microscopy and Microanalysis 26, S2 (2020): 3170–72. http://dx.doi.org/10.1017/s1431927620024058.
Der volle Inhalt der QuelleImanaka, Nobuhito, and Shinji Tamura. "Development of Multivalent Ion Conducting Solid Electrolytes." Bulletin of the Chemical Society of Japan 84, no. 4 (2011): 353–62. http://dx.doi.org/10.1246/bcsj.20100178.
Der volle Inhalt der QuelleSchauser, Nicole S., Ram Seshadri, and Rachel A. Segalman. "Multivalent ion conduction in solid polymer systems." Molecular Systems Design & Engineering 4, no. 2 (2019): 263–79. http://dx.doi.org/10.1039/c8me00096d.
Der volle Inhalt der QuelleLi, Zhong-Qiu, Yang Wang, Zeng-Qiang Wu, Ming-Yang Wu, and Xing-Hua Xia. "Bioinspired Multivalent Ion Responsive Nanopore with Ultrahigh Ion Current Rectification." Journal of Physical Chemistry C 123, no. 22 (2019): 13687–92. http://dx.doi.org/10.1021/acs.jpcc.9b02279.
Der volle Inhalt der QuelleGates, Leslie, and Niya Sa. "Investigation of Suitability of Electrolytes in a Trivalent System." ECS Meeting Abstracts MA2023-01, no. 1 (2023): 425. http://dx.doi.org/10.1149/ma2023-011425mtgabs.
Der volle Inhalt der QuelleKim, Chaewon, Useul Hwang, Sangjin Lee, and Young-Kyu Han. "First-Principles Dynamics Investigation of Germanium as an Anode Material in Multivalent-Ion Batteries." Nanomaterials 13, no. 21 (2023): 2868. http://dx.doi.org/10.3390/nano13212868.
Der volle Inhalt der QuelleIslam, Shakirul M., Ryan J. Malone, Wenlong Yang, et al. "Nanographene Cathode Materials for Nonaqueous Zn-Ion Batteries." Journal of The Electrochemical Society 169, no. 11 (2022): 110517. http://dx.doi.org/10.1149/1945-7111/ac9f72.
Der volle Inhalt der QuelleWang, Bangda, Natsume Koike, Kenta Iyoki, et al. "Insights into the ion-exchange properties of Zn(ii)-incorporated MOR zeolites for the capture of multivalent cations." Physical Chemistry Chemical Physics 21, no. 7 (2019): 4015–21. http://dx.doi.org/10.1039/c8cp06975a.
Der volle Inhalt der QuelleLiu, Yiyang, Guanjie He, Hao Jiang, Ivan P. Parkin, Paul R. Shearing, and Dan J. L. Brett. "Multivalent Ion Batteries: Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities (Adv. Funct. Mater. 13/2021)." Advanced Functional Materials 31, no. 13 (2021): 2170089. http://dx.doi.org/10.1002/adfm.202170089.
Der volle Inhalt der QuelleBesha, Abreham Tesfaye, Misgina Tilahun Tsehaye, David Aili, Wenjuan Zhang, and Ramato Ashu Tufa. "Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis." Membranes 10, no. 1 (2019): 7. http://dx.doi.org/10.3390/membranes10010007.
Der volle Inhalt der QuelleJing, Benxin, Jie Qiu, and Yingxi Zhu. "Organic–inorganic macroion coacervate complexation." Soft Matter 13, no. 28 (2017): 4881–89. http://dx.doi.org/10.1039/c7sm00955k.
Der volle Inhalt der QuelleMa, Xinpei, Junye Cheng, Liubing Dong, et al. "Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors." Energy Storage Materials 20 (July 2019): 335–42. http://dx.doi.org/10.1016/j.ensm.2018.10.020.
Der volle Inhalt der QuelleLi, Matthew, Jun Lu, Xiulei Ji, et al. "Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes." Nature Reviews Materials 5, no. 4 (2020): 276–94. http://dx.doi.org/10.1038/s41578-019-0166-4.
Der volle Inhalt der QuelleNaughton, Elise M., Mingqiang Zhang, Diego Troya, Karen J. Brewer, and Robert B. Moore. "Size dependent ion-exchange of large mixed-metal complexes into Nafion® membranes." Polymer Chemistry 6, no. 38 (2015): 6870–79. http://dx.doi.org/10.1039/c5py00714c.
Der volle Inhalt der QuelleKim, Kwangnam, and Donald J. Siegel. "Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes." Chemistry of Materials 33, no. 6 (2021): 2187–97. http://dx.doi.org/10.1021/acs.chemmater.1c00096.
Der volle Inhalt der QuelleLiu, Chaofeng. "Aqueous Multivalent Ion Batteries Built on Hydrated Vanadates." ECS Meeting Abstracts MA2020-01, no. 2 (2020): 226. http://dx.doi.org/10.1149/ma2020-012226mtgabs.
Der volle Inhalt der QuellePark, Min Je, Hooman Yaghoobnejad Asl, and Arumugam Manthiram. "Multivalent-Ion versus Proton Insertion into Battery Electrodes." ACS Energy Letters 5, no. 7 (2020): 2367–75. http://dx.doi.org/10.1021/acsenergylett.0c01021.
Der volle Inhalt der QuelleQuinn, J. F., and F. Caruso. "Multivalent-Ion-Mediated Stabilization of Hydrogen-Bonded Multilayers." Advanced Functional Materials 16, no. 9 (2006): 1179–86. http://dx.doi.org/10.1002/adfm.200500530.
Der volle Inhalt der QuelleWang, Chunlei, Zibing Pan, Huaqi Chen, Xiangjun Pu, and Zhongxue Chen. "MXene-Based Materials for Multivalent Metal-Ion Batteries." Batteries 9, no. 3 (2023): 174. http://dx.doi.org/10.3390/batteries9030174.
Der volle Inhalt der QuelleDai, Fangfang, Risheng Yu, Ruobing Yi, et al. "Ultrahigh water permeance of a reduced graphene oxide nanofiltration membrane for multivalent metal ion rejection." Chemical Communications 56, no. 95 (2020): 15068–71. http://dx.doi.org/10.1039/d0cc06302a.
Der volle Inhalt der QuelleSrivastava, Sunita, Anuj Chhabra, and Oleg Gang. "Effect of mono- and multi-valent ionic environments on the in-lattice nanoparticle-grafted single-stranded DNA." Soft Matter 18, no. 3 (2022): 526–34. http://dx.doi.org/10.1039/d1sm01171e.
Der volle Inhalt der QuellePark, Haesun, and Peter Zapol. "Thermodynamic and kinetic properties of layered-CaCo2O4 for the Ca-ion batteries: a systematic first-principles study." Journal of Materials Chemistry A 8, no. 41 (2020): 21700–21710. http://dx.doi.org/10.1039/d0ta07573f.
Der volle Inhalt der QuelleDai, Fangfang, Feng Zhou, Junlang Chen, Shanshan Liang, Liang Chen, and Haiping Fang. "Ultrahigh water permeation with a high multivalent metal ion rejection rate through graphene oxide membranes." Journal of Materials Chemistry A 9, no. 17 (2021): 10672–77. http://dx.doi.org/10.1039/d1ta00647a.
Der volle Inhalt der QuelleYao, Long, Shunlong Ju, and Xuebin Yu. "Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries." Journal of Materials Chemistry A 9, no. 31 (2021): 16878–88. http://dx.doi.org/10.1039/d1ta03465k.
Der volle Inhalt der QuelleZhang, Jiaxu, Xiang Wang, Jing Lv, Dong-Sheng Li, and Tao Wu. "A multivalent mixed-metal strategy for single-Cu+-ion-bridged cluster-based chalcogenide open frameworks for sensitive nonenzymatic detection of glucose." Chemical Communications 55, no. 45 (2019): 6357–60. http://dx.doi.org/10.1039/c9cc02905b.
Der volle Inhalt der QuelleChen, Mei, Jinxing Ma, Zhiwei Wang, Xingran Zhang, and Zhichao Wu. "Insights into iron induced fouling of ion-exchange membranes revealed by a quartz crystal microbalance with dissipation monitoring." RSC Advances 7, no. 58 (2017): 36555–61. http://dx.doi.org/10.1039/c7ra05510b.
Der volle Inhalt der QuelleLiu, Yi, and Rudolf Holze. "Metal-Ion Batteries." Encyclopedia 2, no. 3 (2022): 1611–23. http://dx.doi.org/10.3390/encyclopedia2030110.
Der volle Inhalt der QuelleMa, Lin, Marshall Schroeder, Glenn Pastel, et al. "(Invited) Promises and Challenges of Multivalent Ion Battery Chemistries." ECS Meeting Abstracts MA2022-02, no. 5 (2022): 552. http://dx.doi.org/10.1149/ma2022-025552mtgabs.
Der volle Inhalt der QuelleLiu, Zhexuan, Liping Qin, Xinxin Cao, et al. "Ion migration and defect effect of electrode materials in multivalent-ion batteries." Progress in Materials Science 125 (April 2022): 100911. http://dx.doi.org/10.1016/j.pmatsci.2021.100911.
Der volle Inhalt der QuelleKarapidakis, Emmanuel, and Dimitra Vernardou. "Progress on V2O5 Cathodes for Multivalent Aqueous Batteries." Materials 14, no. 9 (2021): 2310. http://dx.doi.org/10.3390/ma14092310.
Der volle Inhalt der QuelleSchroeder, Marshall A., Lin Ma, Glenn Pastel, and Kang Xu. "The mystery and promise of multivalent metal-ion batteries." Current Opinion in Electrochemistry 29 (October 2021): 100819. http://dx.doi.org/10.1016/j.coelec.2021.100819.
Der volle Inhalt der QuellePan, Zhenghui, Ximeng Liu, Jie Yang, et al. "Aqueous Rechargeable Multivalent Metal‐Ion Batteries: Advances and Challenges." Advanced Energy Materials 11, no. 24 (2021): 2100608. http://dx.doi.org/10.1002/aenm.202100608.
Der volle Inhalt der QuelleZhang, Zihe, Xu Zhang, Xudong Zhao, Sai Yao, An Chen, and Zhen Zhou. "Computational Screening of Layered Materials for Multivalent Ion Batteries." ACS Omega 4, no. 4 (2019): 7822–28. http://dx.doi.org/10.1021/acsomega.9b00482.
Der volle Inhalt der QuelleKirbawy, S. Alvin, and Marquita K. Hill. "Multivalent ion removal from kraft black liquor by ultrafiltration." Industrial & Engineering Chemistry Research 26, no. 9 (1987): 1851–54. http://dx.doi.org/10.1021/ie00069a022.
Der volle Inhalt der QuelleHübsch, E., G. Fleith, J. Fatisson, et al. "Multivalent Ion/Polyelectrolyte Exchange Processes in Exponentially Growing Multilayers." Langmuir 21, no. 8 (2005): 3664–69. http://dx.doi.org/10.1021/la047258d.
Der volle Inhalt der QuelleJohnson, Ian D., Aashutosh Mistry, Liang Yin, et al. "Ion Transport in Chromite Spinels for Multivalent Battery Applications." ECS Meeting Abstracts MA2020-02, no. 2 (2020): 315. http://dx.doi.org/10.1149/ma2020-022315mtgabs.
Der volle Inhalt der QuelleMcPhee, Brian D. "Apollo, Dionysus, and the Multivalent Birds of Euripides’ Ion." Classical World 110, no. 4 (2017): 475–89. http://dx.doi.org/10.1353/clw.2017.0039.
Der volle Inhalt der QuelleLi, Yuqi, Yaxiang Lu, Philipp Adelhelm, Maria-Magdalena Titirici, and Yong-Sheng Hu. "Intercalation chemistry of graphite: alkali metal ions and beyond." Chemical Society Reviews 48, no. 17 (2019): 4655–87. http://dx.doi.org/10.1039/c9cs00162j.
Der volle Inhalt der QuelleHao, Qing-Hai, Qian Chen, Zhen Zheng, et al. "Molecular dynamics simulations of cylindrical polyelectrolyte brushes in monovalent and multivalent salt solutions." Journal of Theoretical and Computational Chemistry 15, no. 03 (2016): 1650026. http://dx.doi.org/10.1142/s0219633616500267.
Der volle Inhalt der QuelleGao, Qiang, Jeremy Come, Michael Naguib, Stephen Jesse, Yury Gogotsi, and Nina Balke. "Synergetic effects of K+and Mg2+ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2MXene." Faraday Discussions 199 (2017): 393–403. http://dx.doi.org/10.1039/c6fd00251j.
Der volle Inhalt der QuelleLi, Le, Weizhuo Zhang, Weijie Pan, et al. "Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions." Nanoscale 13, no. 46 (2021): 19291–305. http://dx.doi.org/10.1039/d1nr05873h.
Der volle Inhalt der QuelleStadie, Nicholas P. "(Invited) Zeolite-Templated Carbon As a Model Material for Electrochemical Energy Storage in Nanometre-Spaced Carbon Channels." ECS Meeting Abstracts MA2022-01, no. 7 (2022): 659. http://dx.doi.org/10.1149/ma2022-017659mtgabs.
Der volle Inhalt der QuelleAsselin, Genevieve, Olivia Paden, Weiqi Qiu, Zicheng Yang, and Niya Sa. "Electrochemical Investigation of Kinetics and Mechanisms of Charge Transfer in Nonaqueous Zinc and Magnesium Electrolytes." ECS Meeting Abstracts MA2022-02, no. 4 (2022): 512. http://dx.doi.org/10.1149/ma2022-024512mtgabs.
Der volle Inhalt der QuelleGulden, Tobias, and Alex Kamenev. "Dynamics of Ion Channels via Non-Hermitian Quantum Mechanics." Entropy 23, no. 1 (2021): 125. http://dx.doi.org/10.3390/e23010125.
Der volle Inhalt der QuelleBui, Hoang Linh, and Chun-Jen Huang. "Tough Polyelectrolyte Hydrogels with Antimicrobial Property via Incorporation of Natural Multivalent Phytic Acid." Polymers 11, no. 10 (2019): 1721. http://dx.doi.org/10.3390/polym11101721.
Der volle Inhalt der Quelle