Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multistatic ISAR“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multistatic ISAR" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multistatic ISAR"
Tang, Zheng-Zhao, Yang-Yang Dong, Chun-Xi Dong, Xin Chang und Guo-Qing Zhao. „A Deception Jamming Method Countering Bi- and Multistatic ISAR Based on Micro-Doppler Effect“. Mathematical Problems in Engineering 2018 (18.09.2018): 1–6. http://dx.doi.org/10.1155/2018/3689382.
Der volle Inhalt der QuelleBrisken, Stefan, Dietmar Matthes, Torsten Mathy und Josef Worms. „Spatially Diverse ISAR Imaging for Classification Performance Enhancement“. International Journal of Electronics and Telecommunications 57, Nr. 1 (01.03.2011): 15–21. http://dx.doi.org/10.2478/v10177-011-0002-2.
Der volle Inhalt der QuellePhan, An, Stefan Brisken, Brian W. ‐H Ng und Hai‐Tan Tran. „Total rotational velocity estimation in a multistatic ISAR system“. IET Radar, Sonar & Navigation 13, Nr. 3 (März 2019): 368–75. http://dx.doi.org/10.1049/iet-rsn.2018.5135.
Der volle Inhalt der QuelleBrisken, Stefan, Marco Martorella, Torsten Mathy, Christoph Wasserzier, Josef G. Worms und Joachim H. G. Ender. „Motion estimation and imaging with a multistatic ISAR system“. IEEE Transactions on Aerospace and Electronic Systems 50, Nr. 3 (Juli 2014): 1701–14. http://dx.doi.org/10.1109/taes.2014.130099.
Der volle Inhalt der QuelleBrisken, Stefan, und Marco Martella. „Multistatic ISAR autofocus with an image entropy-based technique“. IEEE Aerospace and Electronic Systems Magazine 29, Nr. 7 (Juli 2014): 30–36. http://dx.doi.org/10.1109/maes.2014.130140.
Der volle Inhalt der QuellePastina, Debora, Marta Bucciarelli und Pierfrancesco Lombardo. „Multistatic and MIMO Distributed ISAR for Enhanced Cross-Range Resolution of Rotating Targets“. IEEE Transactions on Geoscience and Remote Sensing 48, Nr. 8 (August 2010): 3300–3317. http://dx.doi.org/10.1109/tgrs.2010.2043740.
Der volle Inhalt der QuelleLi, Ruize, Shuanghui Zhang, Chi Zhang, Yongxiang Liu und Xiang Li. „A Multistatic ISAR Imaging Method Based on Similarity Prior With Overlaps Among Observation Angles“. IEEE Geoscience and Remote Sensing Letters 20 (2023): 1–5. http://dx.doi.org/10.1109/lgrs.2023.3321718.
Der volle Inhalt der QuelleLi, Ning, Ling Wang und Gong Zhang. „High-resolution Side-view and Top-view Imaging Method of Ship Targets Using Multistatic ISAR“. JOURNAL OF RADARS 1, Nr. 2 (02.08.2012): 163–70. http://dx.doi.org/10.3724/sp.j.1300.2012.20021.
Der volle Inhalt der QuelleTesta, Alejandro, Debora Pastina und Fabrizio Santi. „Decentralized Approach for Translational Motion Estimation with Multistatic Inverse Synthetic Aperture Radar Systems“. Remote Sensing 15, Nr. 18 (05.09.2023): 4372. http://dx.doi.org/10.3390/rs15184372.
Der volle Inhalt der QuelleSuwa, Kei, Toshio Wakayama und Masafumi Iwamoto. „Three-Dimensional Target Geometry and Target Motion Estimation Method Using Multistatic ISAR Movies and Its Performance“. IEEE Transactions on Geoscience and Remote Sensing 49, Nr. 6 (Juni 2011): 2361–73. http://dx.doi.org/10.1109/tgrs.2010.2095423.
Der volle Inhalt der QuelleDissertationen zum Thema "Multistatic ISAR"
Yousfi, Fayin. „Multistatic ISAR imaging : image formation, structure analysis and motion estimation“. Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASG014.
Der volle Inhalt der QuelleMonostatic ISAR (Inverse Synthetic Aperture Radar) imaging provides high-resolution images of object based on their relative motion to a radar. These images can be used for identification and classifications tasks. The addition of distant bistatic receivers can complement monostatic imaging by providing different observation geometries. This PhD aims at deriving information on the structure and the rotational motion of aircraft and satellites using multiple ISAR observers. More specifically, the difference between ISAR images can be used to identify non-isotropic features, such as solar panels, that are only visible through specific aspect angles. Furthermore, other features visible on multiple images can be exploited to estimate the rotational motion of the imaged object and to retrieve 3-Dimensional information. To meet these objectives, a formalism based on frames is developed to define accurately 3D motions and the ISAR projections provided by the different observers. Based on this formalism, two methods for 3D estimation are developed. The first method matches flat areas of a stabilized object to estimate their normal. The second method estimates the coordinates of linear features of an object by matching their projections in the ISAR images. This method also enables the estimation of the spin of the object. Uncertainty formulas are derived to assess the accuracy of these estimations. Both methods are validated with real satellite and aircraft data. The aircraft data were gathered during bistatic trials conducted near Orly airport, while the satellite data were collected during long-baseline bistatic trials between France and Germany. To generate images from the recorded data, a robust ISAR processing adapted to the bistatic geometry and to low SNR data is developed. With the aircraft images, the complete attitude of an aircraft is estimated. With the satellite images, the length and relative orientation of features of the satellites SWARM-B, Kosmos 1300 and ENVISAT as well as the spin of ENVISAT are estimated
Buchteile zum Thema "Multistatic ISAR"
Bączyk, Marcin Kamil. „Passive multistatic ISAR imaging“. In Multidimensional Radar Imaging. Volume 2, 127–57. United Kingdom: SciTech Publishing Inc., 2024. https://doi.org/10.1049/sbra562e_ch6.
Der volle Inhalt der Quelle„Sparsity-driven multistatic ISAR image reconstruction“. In Multidimensional Radar Imaging, 235–51. Institution of Engineering and Technology, 2019. http://dx.doi.org/10.1049/sbra527e_ch7.
Der volle Inhalt der Quelle„Multistatic 3D ISAR imaging of maritime targets“. In Multidimensional Radar Imaging, 287–309. Institution of Engineering and Technology, 2019. http://dx.doi.org/10.1049/sbra527e_ch9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multistatic ISAR"
Gröneweg, Jan-Steffen, Soheil Gherekhloo, Maximilian Lübke und Norman Franchi. „Evaluating the Performance of UE-Side Sensing in Multistatic ISAC Systems for Highway Scenarios“. In 2025 IEEE 5th International Symposium on Joint Communications & Sensing (JC&S), 1–6. IEEE, 2025. https://doi.org/10.1109/jcs64661.2025.10880653.
Der volle Inhalt der QuelleZhuge, Shun, Yugang Ma, Zhiping Lin und Yonghong Zeng. „A Novel Geometric Solution for Moving Target Localization Through Multistatic Sensing in the ISAC System“. In 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/vtc2024-spring62846.2024.10683032.
Der volle Inhalt der Quellevan Dorp, P., J. M. M. Verzeilberg und M. P. G. Otten. „Coherent multistatic ISAR imaging“. In IET International Conference on Radar Systems (Radar 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1624.
Der volle Inhalt der QuelleBrisken, Stefan. „Multistatic ISAR - chances and challenges“. In 2014 International Radar Conference (Radar). IEEE, 2014. http://dx.doi.org/10.1109/radar.2014.7060243.
Der volle Inhalt der QuelleSalvetti, Federica, Daniele Stagliano, Elisa Giusti und Marco Martorella. „Multistatic 3D ISAR image reconstruction“. In 2015 IEEE International Radar Conference (RadarCon). IEEE, 2015. http://dx.doi.org/10.1109/radar.2015.7131075.
Der volle Inhalt der QuelleBrisken, S., T. Mathy, E. Giusti, M. Martorella und C. Wasserzier. „Multistatic ISAR autofocussing using image contrast optimization“. In IET International Conference on Radar Systems (Radar 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1623.
Der volle Inhalt der QuelleTesta, Alejandro, Fabrizio Santi und Debora Pastina. „Translational motion estimation with multistatic ISAR systems“. In 2021 International Radar Symposium (IRS). IEEE, 2021. http://dx.doi.org/10.23919/irs51887.2021.9466180.
Der volle Inhalt der QuelleNassib, Ali, Tadahiro Negishi, Danilo Erricolo, Michael C. Wicks und Lorenzo Lo Monte. „A dyadic target model for multistatic SAR/ISAR imaging“. In 2015 IEEE International Radar Conference (RadarCon). IEEE, 2015. http://dx.doi.org/10.1109/radar.2015.7131235.
Der volle Inhalt der QuelleTurin, Fabrizio, und Debora Pastina. „Multistatic passive ISAR based on geostationary satellites for coastal surveillance“. In 2013 IEEE Radar Conference (RadarCon). IEEE, 2013. http://dx.doi.org/10.1109/radar.2013.6586123.
Der volle Inhalt der QuelleRattan, A., D. Andre und M. Finnis. „Multistatic hybrid SAR/ISAR data generation using a stationary target“. In International Conference on Radar Systems (RADAR 2022). Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.2294.
Der volle Inhalt der Quelle