Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multiplication de matrices creuses“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multiplication de matrices creuses" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multiplication de matrices creuses"
Keles, Hasan. „Multiplication of Matrices“. Indonesian Journal of Mathematics and Applications 2, Nr. 1 (31.03.2024): 1–8. http://dx.doi.org/10.21776/ub.ijma.2024.002.01.1.
Der volle Inhalt der QuelleRoesler, Friedrich. „Generalized Matrices“. Canadian Journal of Mathematics 41, Nr. 3 (01.06.1989): 556–76. http://dx.doi.org/10.4153/cjm-1989-024-5.
Der volle Inhalt der QuelleBair, J. „72.34 Multiplication by Diagonal Matrices“. Mathematical Gazette 72, Nr. 461 (Oktober 1988): 228. http://dx.doi.org/10.2307/3618262.
Der volle Inhalt der QuelleSowa, Artur. „Factorizing matrices by Dirichlet multiplication“. Linear Algebra and its Applications 438, Nr. 5 (März 2013): 2385–93. http://dx.doi.org/10.1016/j.laa.2012.09.021.
Der volle Inhalt der QuelleCouncilman, Samuel. „Sharing Teaching Ideas: Bisymmetric Matrices: Some Elementary New Problems“. Mathematics Teacher 82, Nr. 8 (November 1989): 622–23. http://dx.doi.org/10.5951/mt.82.8.0622.
Der volle Inhalt der QuelleIgnatenko, M. V., und L. A. Yanovich. „On the theory of interpolation of functions on sets of matrices with the Hadamard multiplication“. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 58, Nr. 3 (12.10.2022): 263–79. http://dx.doi.org/10.29235/1561-2430-2022-58-3-263-279.
Der volle Inhalt der QuelleAbobala, Mohammad. „On Refined Neutrosophic Matrices and Their Application in Refined Neutrosophic Algebraic Equations“. Journal of Mathematics 2021 (13.02.2021): 1–5. http://dx.doi.org/10.1155/2021/5531093.
Der volle Inhalt der QuelleWaterhouse, William C. „Circulant-style matrices closed under multiplication“. Linear and Multilinear Algebra 18, Nr. 3 (November 1985): 197–206. http://dx.doi.org/10.1080/03081088508817686.
Der volle Inhalt der QuelleTheeracheep, Siraphob, und Jaruloj Chongstitvatana. „Multiplication of medium-density matrices using TensorFlow on multicore CPUs“. Tehnički glasnik 13, Nr. 4 (11.12.2019): 286–90. http://dx.doi.org/10.31803/tg-20191104183930.
Der volle Inhalt der QuelleMangngiri, Itsar, Qonita Qurrota A’yun und Wasono Wasono. „AN ORDER-P TENSOR MULTIPLICATION WITH CIRCULANT STRUCTURE“. BAREKENG: Jurnal Ilmu Matematika dan Terapan 17, Nr. 4 (19.12.2023): 2293–304. http://dx.doi.org/10.30598/barekengvol17iss4pp2293-2304.
Der volle Inhalt der QuelleDissertationen zum Thema "Multiplication de matrices creuses"
Gonon, Antoine. „Harnessing symmetries for modern deep learning challenges : a path-lifting perspective“. Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0043.
Der volle Inhalt der QuelleNeural networks have demonstrated impressive practical success, but theoretical tools for analyzing them are often limited to simple cases that do not capture the complexity of real-world applications. This thesis seeks to narrow this gap by making theoretical tools more applicable to practical scenarios.The first focus of this work is on generalization: can a given network perform well on previously unseen data? This thesis improves generalization guarantees based on the path-norm and extends their applicability to ReLU networks incorporating pooling or skip connections. By reducing the gap between theoretically analyzable networks and those used in practice, this work provides the first empirical evaluation of these guarantees on practical ReLU networks, such as ResNets.The second focus is on resource optimization (time, energy, memory). This thesis introduces a novel pruning method based on the path-norm, which not only retains the accuracy of traditional magnitude pruning but also exhibits robustness to parameter symmetries. Additionally, this work presents a new GPU matrix multiplication algorithm that enhances the state-of-the-art for sparse matrices with Kronecker-structured support, achieving gains in both time and energy. Finally, this thesis makes approximation guarantees for neural networks more concrete by establishing sufficient bit-precision conditions to ensure that quantized networks maintain the same approximation speed as their unconstrained real-weight counterparts
Lawson, Jean-Christophe. „Smart : un neurocalculateur parallèle exploitant des matrices creuses“. Grenoble INPG, 1993. http://www.theses.fr/1993INPG0030.
Der volle Inhalt der QuelleGeronimi, Sylvain. „Determination d'ensembles essentiels minimaux dans les matrices creuses : application a l'analyse des circuits“. Toulouse 3, 1987. http://www.theses.fr/1987TOU30104.
Der volle Inhalt der QuelleVömel, Christof. „Contributions à la recherche en calcul scientifique haute performance pour les matrices creuses“. Toulouse, INPT, 2003. http://www.theses.fr/2003INPT003H.
Der volle Inhalt der QuelleGrigori, Laura. „Prédiction de structure et algorithmique parallèle pour la factorisation LU des matrices creuses“. Nancy 1, 2001. http://www.theses.fr/2001NAN10264.
Der volle Inhalt der QuelleThis dissertation treats of parallel numerical computing considering the Gaussian elimination, as it is used to solve large sparse nonsymmetric linear systems. Usually, computations on sparse matrices have an initial phase that predicts the nonzero structure of the output, which helps with memory allocations, set up data structures and schedule parallel tasks prior to the numerical computation itself. To this end, we study the structure prediction for the sparse LU factorization with partial pivoting. We are mainly interested to identify upper bounds as tight as possible to these structures. This structure prediction is then used in a phase called symbolic factorization, followed by a phase that performs the numerical computation of the factors, called numerical factorization. For very large matrices, a significant part of the overall memory space is needed by structures used during the symbolic factorization, and this can prevent a swap-free execution of the LU factorization. We propose and study a parallel algorithm to decrease the memory requirements of the nonsymmetric symbolic factorization. For an efficient parallel execution of the numerical factorization, we consider the analysis and the handling of the data dependencies graphs resulting from the processing of sparse matrices. This analysis enables us to develop scalable algorithms, which manage memory and computing resources in an effective way
Geronimi, Sylvain. „Détermination d'ensembles essentiels minimaux dans les matrices creuses application à l'analyse des circuits /“. Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376053608.
Der volle Inhalt der QuellePuglisi, Chiara. „Factorisation QR de grandes matrices creuses basée sur une méthode multifrontale dans un environnement multiprocesseur“. Toulouse, INPT, 1993. http://www.theses.fr/1993INPT091H.
Der volle Inhalt der QuelleEDJLALI, GUY. „Contribution a la parallelisation de methodes iteratives hybrides pour matrices creuses sur architectures heterogenes“. Paris 6, 1994. http://www.theses.fr/1994PA066360.
Der volle Inhalt der QuelleBrown, Christopher Ian. „A VLSI device for multiplication of high order sparse matrices“. Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265915.
Der volle Inhalt der QuelleGuermouche, Abdou. „Étude et optimisation du comportement mémoire dans les méthodes parallèles de factorisation de matrices creuses“. Lyon, École normale supérieure (sciences), 2004. http://www.theses.fr/2004ENSL0284.
Der volle Inhalt der QuelleDirect methods for solving sparse linear systems are known for their large memory requirements that can represent the limiting factor to solve large systems. The work done during this thesis concerns the study and the optimization of the memory behaviour of a sparse direct method, the multifrontal method, for both the sequential and the parallel cases. Thus, optimal memory minimization algorithms have been proposed for the sequential case. Concerning the parallel case, we have introduced new scheduling strategies aiming at improving the memory behaviour of the method. After that, we extended these approaches to have a good performance while keeping a good memory behaviour. In addition, in the case where the data to be treated cannot fit into memory, out-of-core factorization schemes have to be designed. To be efficient, such approaches require to overlap I/O operations with computations and to reuse the data sets already in memory to reduce the amount of I/O operations. Therefore, another part of the work presented in this thesis concerns the design and the study of implicit out-of-core techniques well-adapted to the memory access pattern of the multifrontal method. These techniques are based on a modification of the standard paging policies of the operating system using a low-level tool (MMUM&MMUSSEL)
Bücher zum Thema "Multiplication de matrices creuses"
United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. An efficient sparse matrix multiplication scheme for the CYBER 205 computer. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Den vollen Inhalt der Quelle findenMunerman, Viktor, Vadim Borisov und Aleksandra Kononova. Mass data processing. Algebraic models and methods. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1906037.
Der volle Inhalt der QuelleGohberg, Israel, Yuli Eidelman und Iulian Haimovici. Separable Type Representations of Matrices and Fast Algorithms: Volume 1 Basics. Completion Problems. Multiplication and Inversion Algorithms. Birkhauser Verlag, 2013.
Den vollen Inhalt der Quelle findenMann, Peter. The (Not So?) Basics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0030.
Der volle Inhalt der QuelleBuchteile zum Thema "Multiplication de matrices creuses"
Eidelman, Yuli, Israel Gohberg und Iulian Haimovici. „Multiplication of Matrices“. In Separable Type Representations of Matrices and Fast Algorithms, 309–26. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0606-0_17.
Der volle Inhalt der QuelleJosipović, Miroslav. „Geometric Algebra and Matrices“. In Geometric Multiplication of Vectors, 141–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01756-9_4.
Der volle Inhalt der QuelleRusso, Luís M. S. „Multiplication Algorithms for Monge Matrices“. In String Processing and Information Retrieval, 94–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16321-0_9.
Der volle Inhalt der QuelleTiskin, A. „Bulk-synchronous parallel multiplication of boolean matrices“. In Automata, Languages and Programming, 494–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0055078.
Der volle Inhalt der QuelleTiskin, A. „Erratum: Bulk-Synchronous Parallel Multiplication of Boolean Matrices“. In Automata, Languages and Programming, 717–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48523-6_68.
Der volle Inhalt der QuelleÇatalyürek, Ümit V., und Cevdet Aykanat. „Decomposing irregularly sparse matrices for parallel matrix-vector multiplication“. In Parallel Algorithms for Irregularly Structured Problems, 75–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0030098.
Der volle Inhalt der QuelleGhosh, Koustabh, Jonathan Fuchs, Parisa Amiri Eliasi und Joan Daemen. „Universal Hashing Based on Field Multiplication and (Near-)MDS Matrices“. In Progress in Cryptology - AFRICACRYPT 2023, 129–50. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37679-5_6.
Der volle Inhalt der QuelleBeierle, Christof, Thorsten Kranz und Gregor Leander. „Lightweight Multiplication in $$GF(2^n)$$ with Applications to MDS Matrices“. In Advances in Cryptology – CRYPTO 2016, 625–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53018-4_23.
Der volle Inhalt der QuelleRen, Da Qi, und Reiji Suda. „Modeling and Optimizing the Power Performance of Large Matrices Multiplication on Multi-core and GPU Platform with CUDA“. In Parallel Processing and Applied Mathematics, 421–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14390-8_44.
Der volle Inhalt der QuelleStitt, Timothy, N. Stan Scott, M. Penny Scott und Phil G. Burke. „2-D R-Matrix Propagation: A Large Scale Electron Scattering Simulation Dominated by the Multiplication of Dynamically Changing Matrices“. In Lecture Notes in Computer Science, 354–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36569-9_23.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multiplication de matrices creuses"
Ikeda, Kohei, Mitsumasa Nakajima, Shota Kita, Akihiko Shinya, Masaya Notomi und Toshikazu Hashimoto. „High-Fidelity WDM-Compatible Photonic Processor for Matrix-Matrix Multiplication“. In CLEO: Applications and Technology, JTh2A.87. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jth2a.87.
Der volle Inhalt der QuelleLiang, Tianyu, Riley Murray, Aydın Buluç und James Demmel. „Fast multiplication of random dense matrices with sparse matrices“. In 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2024. http://dx.doi.org/10.1109/ipdps57955.2024.00014.
Der volle Inhalt der QuelleQian, Qiuming. „Optical full-parallel three matrices multiplication“. In International Conference on Optoelectronic Science and Engineering '90. SPIE, 2017. http://dx.doi.org/10.1117/12.2294902.
Der volle Inhalt der QuelleTiskin, Alexander. „Fast distance multiplication of unit-Monge matrices“. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2010. http://dx.doi.org/10.1137/1.9781611973075.103.
Der volle Inhalt der QuelleGlushan, V. M., und Lozovoy A. Yu. „On Distributed Multiplication of Large-Scale Matrices“. In 2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2021. http://dx.doi.org/10.1109/aict52784.2021.9620434.
Der volle Inhalt der QuelleAustin, Brian, Eric Roman und Xiaoye Li. „Resilient Matrix Multiplication of Hierarchical Semi-Separable Matrices“. In HPDC'15: The 24th International Symposium on High-Performance Parallel and Distributed Computing. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2751504.2751507.
Der volle Inhalt der QuelleRamamoorthy, Aditya, Li Tang und Pascal O. Vontobel. „Universally Decodable Matrices for Distributed Matrix-Vector Multiplication“. In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849451.
Der volle Inhalt der QuelleBuluc, Aydin, und John R. Gilbert. „On the representation and multiplication of hypersparse matrices“. In Distributed Processing Symposium (IPDPS). IEEE, 2008. http://dx.doi.org/10.1109/ipdps.2008.4536313.
Der volle Inhalt der QuelleBallard, Grey, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz, Oded Schwartz und Sivan Toledo. „Communication optimal parallel multiplication of sparse random matrices“. In SPAA '13: 25th ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2486159.2486196.
Der volle Inhalt der QuelleLabini, Paolo Sylos, Massimo Bernaschi, Werner Nutt, Francesco Silvestri und Flavio Vella. „Blocking Sparse Matrices to Leverage Dense-Specific Multiplication“. In 2022 IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms (IA3). IEEE, 2022. http://dx.doi.org/10.1109/ia356718.2022.00009.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Multiplication de matrices creuses"
Ballard, Grey, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz, Oded Schwartz und Sivan Toledo. Communication Optimal Parallel Multiplication of Sparse Random Matrices. Fort Belvoir, VA: Defense Technical Information Center, Februar 2013. http://dx.doi.org/10.21236/ada580140.
Der volle Inhalt der Quelle