Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multiples integrals“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multiples integrals" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multiples integrals"
Song, Jiang Yong. „An Elliptic Integral Solution to the Multiple Inflections Large Deflection Beams in Compliant Mechanisms“. Advanced Materials Research 971-973 (Juni 2014): 349–52. http://dx.doi.org/10.4028/www.scientific.net/amr.971-973.349.
Der volle Inhalt der Quellevan der Neut, Joost, und Kees Wapenaar. „Adaptive overburden elimination with the multidimensional Marchenko equation“. GEOPHYSICS 81, Nr. 5 (September 2016): T265—T284. http://dx.doi.org/10.1190/geo2016-0024.1.
Der volle Inhalt der QuelleSaouter, Yannick. „New pancake series for π“. Mathematical Gazette 104, Nr. 560 (18.06.2020): 296–303. http://dx.doi.org/10.1017/mag.2020.53.
Der volle Inhalt der QuelleBandyrskii, B., L. Hoshko, I. Lazurchak und M. Melnyk. „Optimal algorithms for computing multiple integrals“. Mathematical Modeling and Computing 4, Nr. 1 (01.07.2017): 1–9. http://dx.doi.org/10.23939/mmc2017.01.001.
Der volle Inhalt der QuelleFleury, Clement, und Ivan Vasconcelos. „Imaging condition for nonlinear scattering-based imaging: Estimate of power loss in scattering“. GEOPHYSICS 77, Nr. 1 (Januar 2012): S1—S18. http://dx.doi.org/10.1190/geo2011-0135.1.
Der volle Inhalt der QuelleKrál, Josef. „Note on generalized multiple Perron integral“. Časopis pro pěstování matematiky 110, Nr. 4 (1985): 371–74. http://dx.doi.org/10.21136/cpm.1985.118252.
Der volle Inhalt der QuelleHaddad, Roudy El. „Repeated integration and explicit formula for the \(n\)-th integral of \(x^m(\ln x)^{m'}\)“. Open Journal of Mathematical Sciences 6, Nr. 1 (10.06.2022): 51–75. http://dx.doi.org/10.30538/oms2022.0178.
Der volle Inhalt der QuelleShao, Zijia, Shuohao Wang und Hetian Yu. „Application of the Residue Theorem to Euler Integral, Gaussian Integral, and Beyond“. Highlights in Science, Engineering and Technology 38 (16.03.2023): 311–16. http://dx.doi.org/10.54097/hset.v38i.5821.
Der volle Inhalt der QuelleBajic, Tatjana. „On relation between one multiple and a corresponding one-dimensional integral with applications“. Yugoslav Journal of Operations Research 28, Nr. 1 (2018): 79–92. http://dx.doi.org/10.2298/yjor160916020b.
Der volle Inhalt der QuelleMalyutin, V. B., und B. O. Nurjanov. „The semiclassical approximation of multiple functional integrals“. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 59, Nr. 4 (05.01.2024): 302–7. http://dx.doi.org/10.29235/1561-2430-2023-59-4-302-307.
Der volle Inhalt der QuelleDissertationen zum Thema "Multiples integrals"
Dworaczek, Guera Charlie. „Analyse asymptotiques d'intégrales multiples : au-delà des beta-ensembles classiques“. Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0036.
Der volle Inhalt der QuelleThis thesis aims to extend mathematical techniques that extract the asymptotic behavior of certain multiple integrals as the number of integrals tends to infinity. A well-understood case is the partition function of classical beta-ensembles. Probabilistic techniques of large deviations and analysis of loop equations form the classical arsenal for its study and allow for a broad understanding of its asymptotic behavior. Non-trivial generalizations of this multiple integral are studied in this manuscript: the high-temperature regime of beta-ensembles and the sinh model. In the first model, the temperature proportional to the number of particles makes the entropy of the same order as the confining potential and the two-body interaction. This has multiple consequences: an unbounded support for the equilibrium measure contrary to the classical regime of beta-ensembles, and a much more delicate master operator to handle. A detailed study of its behavior allows for the demonstration of a central limit theorem and the asymptotic behavior of the logarithm of its partition function. This first result permits the study of certain aspects of so-called integrable physical systems like the Toda chain, and more specifically, its hydrodynamic limit. This second result finally extends the application of the method of loop equations to cases where particles do not concentrate on a compact set. Lastly, another model is studied, the sinh model. The study of this model is motivated by the quantum separation of variables method where such integrals appear. It constitutes a generalization of classical beta-ensembles where the confining effect is weaker than the interaction, and the latter is more complicated. The equilibrium measure is studied, leading to a certain verification of Lukyanov's conjecture on the quantum sinh-Gordon model in 1+1 dimensions and finite volume
Coine, Clément. „Continuous linear and bilinear Schur multipliers and applications to perturbation theory“. Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD074/document.
Der volle Inhalt der QuelleIn the first chapter, we define some tensor products and we identify their dual space. Then, we give some properties of Schatten classes. The end of the chapter is dedicated to the study of Bochner spaces valued in the space of operators that can be factorized by a Hilbert space.The second chapter is dedicated to linear Schur multipliers. We characterize bounded multipliers on B(Lp, Lq) when p is less than q and then apply this result to obtain new inclusion relationships among spaces of multipliers.In the third chapter, we characterize, by means of linear Schur multipliers, continuous bilinear Schur multipliers valued in the space of trace class operators. In the fourth chapter, we give several results concerning multiple operator integrals. In particular, we characterize triple operator integrals mapping valued in trace class operators and then we give a necessary and sufficient condition for a triple operator integral to define a completely bounded map on the Haagerup tensor product of compact operators. Finally, the fifth chapter is dedicated to the resolution of Peller's problems. We first study the connection between multiple operator integrals and perturbation theory for functional calculus of selfadjoint operators and we finish with the construction of counter-examples for those problems
Rindone, Fabio. „New non-additive integrals in Multiple Criteria Decision Analysis“. Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1315.
Der volle Inhalt der QuelleBeiraghi, Shapour. „Multiple classifier fusion using the fuzzy integral“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/MQ52513.pdf.
Der volle Inhalt der QuelleRen, Deqing. „New techniques of multiple integral field spectroscopy“. Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3800/.
Der volle Inhalt der QuelleZhang, Chengdian. „Calculus of variations with multiple integration“. Bonn : [s.n.], 1989. http://catalog.hathitrust.org/api/volumes/oclc/20436929.html.
Der volle Inhalt der QuelleRichter, Gregor. „Iterated Integrals and genus-one open-string amplitudes“. Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19309.
Der volle Inhalt der QuelleOver the last few decades the prevalence of multiple polylogarithms and multiple zeta values in low order Feynman diagram computations of quantum field theory has received increased attention, revealing a link to the mathematical theories of Chen’s iterated integrals and periods. More recently, a similar ubiquity of multiple zeta values was observed in the α'-expansion of genus-zero string theory amplitudes. Inspired by these developments, this work is concerned with the systematic appearance of iterated integrals in scattering amplitudes of open superstring theory. In particular, the focus will be on studying the genus-one amplitude, which requires the notion of iterated integrals defined on punctured elliptic curves. We introduce the notion of twisted elliptic multiple zeta values that are defined as a class of iterated integrals naturally associated to an elliptic curve with a rational lattice removed. Subsequently, we establish an initial value problem that determines the expansions of twisted elliptic multiple zeta values in terms of the modular parameter τ of the elliptic curve. Any twisted elliptic multiple zeta value degenerates to cyclotomic multiple zeta values at the cusp τ → i∞, with the corresponding limit serving as the initial condition of the initial value problem. Finally, we describe how to express genus-one open-string amplitudes in terms of twisted elliptic multiple zeta values and study the four-point genus-one open-string amplitude as an example. For this example we find that up to third order in α' all possible contributions in fact belong to the subclass formed by elliptic multiple zeta values, which is equivalent to the absence of unphysical poles in Gliozzi-Scherk-Olive projected superstring theory.
Rey, Neto Edgard Casal de [UNESP]. „Reduções perturbativas com multiplos tempos e hierarquias de equações integraveis“. Universidade Estadual Paulista (UNESP), 1996. http://hdl.handle.net/11449/132674.
Der volle Inhalt der QuelleRey, Neto Edgard Casal de. „Reduções perturbativas com multiplos tempos e hierarquias de equações integraveis /“. São Paulo : [s.n.], 1996. http://hdl.handle.net/11449/132674.
Der volle Inhalt der QuelleHu, Dehui. „Understanding introductory students’ application of integrals in physics from multiple perspectives“. Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16190.
Der volle Inhalt der QuelleDepartment of Physics
N. Sanjay Rebello
Calculus is used across many physics topics from introductory to upper-division level college courses. The concepts of differentiation and integration are important tools for solving real world problems. Using calculus or any mathematical tool in physics is much more complex than the straightforward application of the equations and algorithms that students often encounter in math classes. Research in physics education has reported students’ lack of ability to transfer their calculus knowledge to physics problem solving. In the past, studies often focused on what students fail to do with less focus on their underlying cognition. However, when solving physics problems requiring the use of integration, their reasoning about mathematics and physics concepts has not yet been carefully and systematically studied. Hence the main purpose of this qualitative study is to investigate student thinking in-depth and provide deeper insights into student reasoning in physics problem solving from multiple perspectives. I propose a conceptual framework by integrating aspects of several theoretical constructs from the literature to help us understand our observations of student work as they solve physics problems that require the use of integration. I combined elements of three important theoretical constructs: mathematical resources or symbolic forms, which are the small pieces of knowledge elements associated with students’ use of mathematical ideas; conceptual metaphors, which describe the systematic mapping of knowledge across multiple conceptual domains – typically from concrete source domain to abstract target domain; and conceptual blending, which describes the construction of new learning by integrating knowledge in different mental spaces. I collected data from group teaching/learning interviews as students solved physics problems requiring setting up integrals. Participants were recruited from a second-semester calculus-based physics course. I conducted qualitative analysis of the videotaped student conversations and their written work. The main contributions of this research include (1) providing evidence for the existence of symbolic forms in students’ reasoning about differentials and integrals, (2) identifying conceptual metaphors involved in student reasoning about differentials and integrals, (3) categorizing the different ways in which students integrate their mathematics and physics knowledge in the context of solving physics integration problems, (4)exploring the use of hypothetical debate problems in shifting students’ framing of physics problem solving requiring mathematics.
Bücher zum Thema "Multiples integrals"
Spandagos, Vaggelēs. Oloklērōtikos logismos: Theōria-methodologia, 1600 lymenes askēseis. Athēna: Aithra, 1988.
Den vollen Inhalt der Quelle findenMajor, Péter. Multiple Wiener-Itô Integrals. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02642-8.
Der volle Inhalt der QuelleBraides, Andrea. Homogenization of multiple integrals. Oxford: Clarendon Press, 1998.
Den vollen Inhalt der Quelle findenSmirnov, V. A. Analytic tools for Feynman integrals. Heidelberg: Springer, 2012.
Den vollen Inhalt der Quelle findenSloan, I. H. Lattice methods for multiple integration. Oxford: Clarendon Press, 1994.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Multiple Integrals in the Calculus of Variations. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Den vollen Inhalt der Quelle findenKorobov, N. M. Teoretikochislovye metody v priblizhennom analize. 2. Aufl. Moskva: MT︠S︡NMO, 2004.
Den vollen Inhalt der Quelle findenKuznet︠s︡ov, D. F. Strong approximation of multiple Ito and Stratonovich stochastic integrals: Multple Fourier series approach. Saint-Peterburg: Politechnical University Publishing House, 2011.
Den vollen Inhalt der Quelle findenKwapień, Stanisław, und Wojbor A. Woyczyński. Random Series and Stochastic Integrals: Single and Multiple. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0425-1.
Der volle Inhalt der Quelle1943-, Woyczyński W. A., Hrsg. Random series and stochastic integrals: Single and multiple. Boston: Birkhäuser, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Multiples integrals"
Coombes, Kevin R., Ronald L. Lipsman und Jonathan M. Rosenberg. „Multiple Integrals“. In Multivariable Calculus and Mattiematica®, 153–83. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1698-8_8.
Der volle Inhalt der QuelleShakarchi, Rami. „Multiple Integrals“. In Problems and Solutions for Undergraduate Analysis, 337–58. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1738-1_21.
Der volle Inhalt der QuelleLang, Serge. „Multiple Integrals“. In Undergraduate Analysis, 565–606. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4757-2698-5_21.
Der volle Inhalt der QuelleCourant, Richard, und Fritz John. „Multiple Integrals“. In Introduction to Calculus and Analysis Volume II/1, 367–542. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57149-7_4.
Der volle Inhalt der QuelleMarshall, Gordon S. „Multiple Integrals“. In Springer Undergraduate Mathematics Series, 127–36. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-3412-1_8.
Der volle Inhalt der QuelleEriksson, Kenneth, Claes Johnson und Donald Estep. „Multiple Integrals“. In Applied Mathematics: Body and Soul, 939–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05800-8_13.
Der volle Inhalt der QuelleCourant, Richard, und Fritz John. „Multiple Integrals“. In Introduction to Calculus and Analysis, 367–542. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8958-3_4.
Der volle Inhalt der QuelleStroud, K. A. „Multiple Integrals“. In Further Engineering Mathematics, 433–96. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20731-2_9.
Der volle Inhalt der QuelleZorich, Vladimir A. „Multiple Integrals“. In Universitext, 109–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48993-2_3.
Der volle Inhalt der QuelleStroud, K. A. „Multiple Integrals“. In Engineering Mathematics, 662–88. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1007/978-1-349-18708-9_23.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multiples integrals"
Banik, Sumit, und Samuel Friot. „Analytic Evaluation of Multiple Mellin-Barnes Integrals“. In Loops and Legs in Quantum Field Theory, 039. Trieste, Italy: Sissa Medialab, 2024. http://dx.doi.org/10.22323/1.467.0039.
Der volle Inhalt der QuelleShakeshaft, Robin. „Theoretical aspects of above-threshold absorption“. In Multiple Excitations of Atoms. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/mea.1986.mb1.
Der volle Inhalt der QuelleGeorgiev, S. „Multiple iso-integrals“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912715.
Der volle Inhalt der QuelleChaloupka, Jan, Filip Kocina, Petr Veigend, Gabriela Nečasová, Jiří Kunovský und Václav Šátek. „Multiple integral computations“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992650.
Der volle Inhalt der QuelleLequn Hu, Derek T. Anderson und Timothy C. Havens. „Multiple kernel aggregation using fuzzy integrals“. In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622312.
Der volle Inhalt der QuelleZelikin, M. I., Piotr Kielanowski, Victor Buchstaber, Anatol Odzijewicz, Martin Schlichenmaier und Theodore Voronov. „On Multiple Integral Minimization Problems“. In XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3527421.
Der volle Inhalt der QuelleOrszulik, Ryan, und Jinjun Shan. „Integral plus double integral synchronization control for multiple piezoelectric actuators“. In 2015 European Control Conference (ECC). IEEE, 2015. http://dx.doi.org/10.1109/ecc.2015.7330684.
Der volle Inhalt der QuelleChaloupka, Jan, Jiří Kunovský, Alžběta Martinkovičová, Václav Šátek und Elvira Thonhofer. „Multiple integral computations using Taylor series“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913137.
Der volle Inhalt der QuelleOkaichi, Naoto, Masato Miura, Jun Arai und Tomoyuki Mishina. „Integral 3D display using multiple LCDs“. In SPIE/IS&T Electronic Imaging, herausgegeben von Nicolas S. Holliman, Andrew J. Woods, Gregg E. Favalora und Takashi Kawai. SPIE, 2015. http://dx.doi.org/10.1117/12.2077514.
Der volle Inhalt der QuelleChaloupka, Jan, Jiří Kunovský, Václav Šátek, Petr Veigend und Alžbeta Martinkovičová. „Numerical Integration of Multiple Integrals using Taylor Polynomial“. In 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005539701630171.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Multiples integrals"
Brigola, R. Remark on the Multiple Wiener Integral. Fort Belvoir, VA: Defense Technical Information Center, März 1987. http://dx.doi.org/10.21236/ada186015.
Der volle Inhalt der QuellePerez-Abreu, Victor. Multiple Wiener Integrals and Nonlinear Functionals of a Nuclear Space Valued Wiener Process. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1986. http://dx.doi.org/10.21236/ada177227.
Der volle Inhalt der QuelleBright, Gerald D., Robert S. Mandry und Mark D. Barnell. Innovative Approach to Fusion Testbed to Integrate Multiple Sensor Data. Fort Belvoir, VA: Defense Technical Information Center, Juli 1995. http://dx.doi.org/10.21236/ada299800.
Der volle Inhalt der QuelleSamorodnitsky, Gennady, und Jerzy Szulga. An Asymptotic Evaluation of the Tail of a Multiple Symmetric Alpha-Stable Integral. Fort Belvoir, VA: Defense Technical Information Center, Februar 1988. http://dx.doi.org/10.21236/ada194570.
Der volle Inhalt der QuelleLandweber, Louis. Residues of Integrals with Three-Dimensional Multipole Singularities, with Application to the Lagally Theorem. Fort Belvoir, VA: Defense Technical Information Center, Juli 1985. http://dx.doi.org/10.21236/ada158771.
Der volle Inhalt der QuelleHarris und Edlund. L51766 Instantaneous Rotational Velocity Development. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 1997. http://dx.doi.org/10.55274/r0010119.
Der volle Inhalt der QuelleBrakarz, José, und Laura Jaitman. Evaluation of Slum Upgrading Programs: Literature Review and Methodological Approaches. Inter-American Development Bank, Dezember 2013. http://dx.doi.org/10.18235/0009149.
Der volle Inhalt der QuelleMoeyaert, Mariola. Introduction to Meta-Analysis. Instats Inc., 2023. http://dx.doi.org/10.61700/9egp6tqy3koga469.
Der volle Inhalt der QuelleMoeyaert, Mariola. Introduction to Meta-Analysis. Instats Inc., 2023. http://dx.doi.org/10.61700/z1ui6nlaom67q469.
Der volle Inhalt der QuelleLee, Jin-Kyu, Amir Naser, Osama Ennasr, Ahmet Soylemezoglu, und Garry Glaspell. Unmanned ground vehicle (UGV) full coverage planning with negative obstacles. Engineer Research and Development Center (U.S.), August 2023. http://dx.doi.org/10.21079/11681/47527.
Der volle Inhalt der Quelle