Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Multiple model adaptive control.

Zeitschriftenartikel zum Thema „Multiple model adaptive control“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Multiple model adaptive control" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kuipers, Matthew, und Petros Ioannou. „Multiple Model Adaptive Control With Mixing“. IEEE Transactions on Automatic Control 55, Nr. 8 (August 2010): 1822–36. http://dx.doi.org/10.1109/tac.2010.2042345.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yang, Xinhao, und Ze Li. „Congestion Control Based on Multiple Model Adaptive Control“. Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/714320.

Der volle Inhalt der Quelle
Annotation:
The congestion controller based on the multiple model adaptive control is designed for the network congestion in TCP/AQM network. As the conventional congestion control is sensitive to the variable network condition, the adaptive control method is adopted in our congestion control. The multiple model adaptive control is introduced in this paper based on the weight calculation instead of the parameter estimation in past adaptive control. The model set is composed by the dynamic model based on the fluid flow. And three “local” congestion controllers are nonlinear output feedback controller based on variable RTT, H2output feedback controller, and proportional-integral controller, respectively. Ns-2 simulation results in section 4 indicate that the proposed algorithm restrains the congestion in variable network condition and maintains a high throughput together with a low packet drop ratio.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lourenco, J. M. A., und J. M. Lemos. „Learning in switching multiple model adaptive control“. IEEE Instrumentation and Measurement Magazine 9, Nr. 3 (Juni 2006): 24–29. http://dx.doi.org/10.1109/mim.2006.1637975.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kim, Youngchol, Sunwook Choi und Taeshin Cho. „Multiple model adaptive control for interval systems“. IFAC Proceedings Volumes 32, Nr. 2 (Juli 1999): 4699–704. http://dx.doi.org/10.1016/s1474-6670(17)56801-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Yingzhao, Weicun Zhang, Xiao Wang und Handong Li. „Multiple Model Adaptive Control of Flexible Arm“. Proceedings of International Conference on Artificial Life and Robotics 24 (10.01.2019): 391–94. http://dx.doi.org/10.5954/icarob.2019.os14-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nasr, Tamer Ahmed, Hossam A. Abdel Fattah und Adel A. R. Hanafy. „Multiple-model adaptive control for interval plants“. International Journal of Control, Automation and Systems 10, Nr. 1 (Februar 2012): 11–19. http://dx.doi.org/10.1007/s12555-012-0102-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Anderson, Brian D. O., Thomas Brinsmead, Daniel Liberzon und A. Stephen Morse. „Multiple model adaptive control with safe switching“. International Journal of Adaptive Control and Signal Processing 15, Nr. 5 (2001): 445–70. http://dx.doi.org/10.1002/acs.684.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hespanha, Jo�o, Daniel Liberzon, A. Stephen Morse, Brian D. O. Anderson, Thomas S. Brinsmead und Franky De Bruyne. „Multiple model adaptive control. Part 2: switching“. International Journal of Robust and Nonlinear Control 11, Nr. 5 (2001): 479–96. http://dx.doi.org/10.1002/rnc.594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Maybeck, P. S., und R. D. Stevens. „Reconfigurable flight control via multiple model adaptive control methods“. IEEE Transactions on Aerospace and Electronic Systems 27, Nr. 3 (Mai 1991): 470–80. http://dx.doi.org/10.1109/7.81428.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

He, W. G., Howard Kaufman und Rob Roy. „Multiple Model Adaptive Control Procedure for Blood Pressure Control“. IEEE Transactions on Biomedical Engineering BME-33, Nr. 1 (Januar 1986): 10–19. http://dx.doi.org/10.1109/tbme.1986.325833.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wang, Kang, Xiaoli Li und Yang Li. „Multiple Model Adaptive Tracking Control Based on Adaptive Dynamic Programming“. Discrete Dynamics in Nature and Society 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/6023892.

Der volle Inhalt der Quelle
Annotation:
Adaptive dynamic programming (ADP) has been tested as an effective method for optimal control of nonlinear system. However, as the structure of ADP requires control input to satisfy the initial admissible control condition, the control performance may be deteriorated due to abrupt parameter change or system failure. In this paper, we introduce the multiple models idea into ADP, multiple subcontrollers run in parallel to supply multiple initial conditions for different environments, and a switching index is set up to decide the appropriate initial conditions for current system. By taking this strategy, the proposed multiple model ADP achieves optimal control for system with jumping parameters. The convergence of multiple model adaptive control based on ADP is proved and the simulation shows that the proposed method can improve the transient response of system effectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Hassani, Vahid, João Pedro Hespanha, Michael Athans und António M. Pascoal. „Stability Analysis of Robust Multiple Model Adaptive Control“. IFAC Proceedings Volumes 44, Nr. 1 (Januar 2011): 350–55. http://dx.doi.org/10.3182/20110828-6-it-1002.01194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

WANG, Hui, und Wei Cun Zhang. „Weighted Multiple Model Adaptive Control Based on ADRC“. Applied Mechanics and Materials 313-314 (März 2013): 412–17. http://dx.doi.org/10.4028/www.scientific.net/amm.313-314.412.

Der volle Inhalt der Quelle
Annotation:
Weighted multiple model adaptive control is a combination of off-line design and on-line decision, which combines a finite number of simple controllers by weighting algorithm. Its an effective means to solve the control problems of complex and uncertain systems. Active Disturbance Rejection Control (ADRC) is a new digital control technology with high accuracy and strong robustness. This paper introduces ADRC as local controller in the weighted multiple model adaptive control system. The simulation results show that the proposed system has strong robustness in a wide range.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Irving, E., C. M. Falinower und C. Fonte. „Adaptive Generalized Predictive Control with Multiple Reference Model“. IFAC Proceedings Volumes 20, Nr. 2 (Juli 1987): 67–72. http://dx.doi.org/10.1016/s1474-6670(17)55939-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Brend, Oliver, Chris Freeman und Mark French. „Multiple-Model Adaptive Control of Functional Electrical Stimulation“. IEEE Transactions on Control Systems Technology 23, Nr. 5 (September 2015): 1901–13. http://dx.doi.org/10.1109/tcst.2015.2394508.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Rosa, Paulo, und Carlos Silvestre. „Multiple-model adaptive control using set-valued observers“. International Journal of Robust and Nonlinear Control 24, Nr. 16 (03.05.2013): 2490–511. http://dx.doi.org/10.1002/rnc.3005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Narendra, K. S., und J. Balakrishnan. „Adaptive control using multiple models“. IEEE Transactions on Automatic Control 42, Nr. 2 (1997): 171–87. http://dx.doi.org/10.1109/9.554398.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Jung, Bokyung, Youdan Kim, Cheolkeun Ha und Min-Jea Tahk. „NONLINEAR RECONFIGURABLE FLIGHT CONTROL SYSTEM USING MULTIPLE MODEL ADAPTIVE CONTROL“. IFAC Proceedings Volumes 40, Nr. 7 (2007): 171–76. http://dx.doi.org/10.3182/20070625-5-fr-2916.00030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Schiller, Gregory J., und Peter S. Maybeck. „Space Structure Control using Multiple Model Adaptive Estimation And Control“. IFAC Proceedings Volumes 27, Nr. 13 (September 1994): 219–24. http://dx.doi.org/10.1016/s1474-6670(17)45803-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Schott, Kevin D., und B. Wayne Bequette. „Control of Chemical Reactors Using Multiple-Model Adaptive Control (MMAC)“. IFAC Proceedings Volumes 28, Nr. 9 (Juni 1995): 345–50. http://dx.doi.org/10.1016/s1474-6670(17)47061-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Liu, J., und R. Li. „Hierarchical adaptive interacting multiple model algorithm“. IET Control Theory & Applications 2, Nr. 6 (01.06.2008): 479–87. http://dx.doi.org/10.1049/iet-cta:20070340.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Peng, Shu Xing, Hua Xue und Dong Dong Li. „Study on Fuzzy Multiple Reference Model Adaptive Control Strategies“. Advanced Materials Research 962-965 (Juni 2014): 2932–38. http://dx.doi.org/10.4028/www.scientific.net/amr.962-965.2932.

Der volle Inhalt der Quelle
Annotation:
A new fuzzy multiple reference model adaptive control method combined with fuzzy select and conventional adaptive control is presented. To overcome the control difficulties which due to significant and unpredictable system parameter variations, fuzzy logic rules are designed to choose the suitable reference model. The new method is applied to control the speed servo system of dynamic model of BLDCM, and the simulation results show it works well with high dynamic performance and control precision under the condition of great change in reference speed and load torque.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

N. Xu, Y., und W. W. Deng. „Research of Multiple Sensors Adaptive Fault-Tolerant Control Based on T-S Fuzzy Model for EMB System“. International Journal of Engineering and Technology 7, Nr. 1 (Februar 2015): 65–69. http://dx.doi.org/10.7763/ijet.2015.v7.768.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Yu, Clement, W. G. He, James M. So, Rob Roy, Howard Kaufman und Jonathan C. Newell. „Improvement in Arteral Oxygen Control Using Multiple-Model Adaptive Control Procedures“. IEEE Transactions on Biomedical Engineering BME-34, Nr. 8 (August 1987): 567–74. http://dx.doi.org/10.1109/tbme.1987.326067.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Gundala, R., K. A. Hoo und M. J. Piovoso. „Multiple Model Adaptive Control Design for a Multiple-Input Multiple-Output Chemical Reactor“. Industrial & Engineering Chemistry Research 39, Nr. 6 (Juni 2000): 1554–64. http://dx.doi.org/10.1021/ie990496x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

GUO, Yu-Ying, und Bin JIANG. „Multiple Model-based Adaptive Reconfiguration Control for Actuator Fault“. Acta Automatica Sinica 35, Nr. 11 (24.12.2009): 1452–58. http://dx.doi.org/10.3724/sp.j.1004.2009.01452.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Zhang, Weicun, und Qing Li. „Weighted Multiple Model Adaptive Control of Time-varying Systems“. Journal of Robotics, Networking and Artificial Life 1, Nr. 4 (2015): 291. http://dx.doi.org/10.2991/jrnal.2015.1.4.8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

WATANABE, KEIGO, und SPYROS G. TZAFESTAS. „Multiple-model adaptive control for jump-linear stochastic systems“. International Journal of Control 50, Nr. 5 (November 1989): 1603–17. http://dx.doi.org/10.1080/00207178908953454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Baldi, S., P. Ioannou und E. Mosca. „Multiple Model Adaptive Mixing Control: The Discrete-Time Case“. IEEE Transactions on Automatic Control 57, Nr. 4 (April 2012): 1040–45. http://dx.doi.org/10.1109/tac.2011.2169620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Li, Xiaoli, Shuning Wang und Wei Wang. „IMPROVED MULTIPLE MODEL ADAPTIVE CONTROL AND ITS STABILITY ANALYSIS“. IFAC Proceedings Volumes 35, Nr. 1 (2002): 97–102. http://dx.doi.org/10.3182/20020721-6-es-1901.00504.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Guo, Y., B. Jiang, Y. Zhang und Z.-W. Zhu. „Multiple model adaptive reconfiguration control of state delayed systems“. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226, Nr. 3 (13.10.2011): 325–37. http://dx.doi.org/10.1177/0959651811420046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Brown, D., O. R. Tutty und E. Rogers. „Enhancements to non-linear multiple model adaptive control schemes“. International Journal of Control 79, Nr. 9 (September 2006): 1010–25. http://dx.doi.org/10.1080/00207170600627485.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

GUO, Yu-Ying, und Bin JIANG. „Multiple Model-based Adaptive Reconfiguration Control for Actuator Fault“. Acta Automatica Sinica 35, Nr. 11 (November 2009): 1452–58. http://dx.doi.org/10.1016/s1874-1029(08)60117-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Teles, Francisco F., und João M. Lemos. „Cancer therapy optimization based on multiple model adaptive control“. Biomedical Signal Processing and Control 48 (Februar 2019): 255–64. http://dx.doi.org/10.1016/j.bspc.2018.09.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bendtsen, Jan, und Klaus Trangbaek. „Multiple Model Adaptive Control Using Dual Youla-Kucera Factorisation“. IFAC Proceedings Volumes 45, Nr. 13 (2012): 63–68. http://dx.doi.org/10.3182/20120620-3-dk-2025.00143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Anderson, B. D. O., T. S. Brinsmead, F. De Bruyne, J. Hespanha, D. Liberzon und A. S. Morse. „Multiple model adaptive control. Part 1: Finite controller coverings“. International Journal of Robust and Nonlinear Control 10, Nr. 11-12 (2000): 909–29. http://dx.doi.org/10.1002/1099-1239(200009/10)10:11/12<909::aid-rnc532>3.0.co;2-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Fekri, Sajjad, Michael Athans und Antonio Pascoal. „Robust multiple model adaptive control (RMMAC): a case study“. International Journal of Adaptive Control and Signal Processing 21, Nr. 1 (2007): 1–30. http://dx.doi.org/10.1002/acs.944.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Sohège, Yves, Marcos Quinones-Grueiro und Gregory Provan. „Automated controller tuning for Weighted Multiple Model Adaptive Control“. IFAC-PapersOnLine 56, Nr. 2 (2023): 4114–19. http://dx.doi.org/10.1016/j.ifacol.2023.10.1744.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Dougherty, Danielle, und Doug Cooper. „A practical multiple model adaptive strategy for multivariable model predictive control“. Control Engineering Practice 11, Nr. 6 (Juni 2003): 649–64. http://dx.doi.org/10.1016/s0967-0661(02)00170-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

NANIWA, Tomohide, und Suguru ARIMOTO. „Learning Control and Model-Based Adaptive Control for Coordination of Multiple Manipulators“. Transactions of the Society of Instrument and Control Engineers 32, Nr. 5 (1996): 706–13. http://dx.doi.org/10.9746/sicetr1965.32.706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Slavov, Tsonyo. „Algorithm for Multiple Model Adaptive Control Based on Input-Output Plant Model“. Cybernetics and Information Technologies 12, Nr. 1 (01.03.2012): 13–33. http://dx.doi.org/10.2478/cait-2012-0002.

Der volle Inhalt der Quelle
Annotation:
Abstract An algorithm for multiple model adaptive control of a time-variant plant in the presence of measurement noise is proposed. This algorithm controls the plant using a bank of PID controllers designed on the base of time invariant input/output models. The control signal is formed as weighting sum of the control signals of local PID controllers. The main contribution of the paper is the objective function minimized to determine the weighting coefficients. The proposed algorithm minimizes the sum of the square general error between the model bank output and the plant output. An equation for on-line determination of the weighting coefficients is obtained. They are determined by the current value of the general error covariance matrix. The main advantage of the algorithm is that the derived general error covariance matrix equation is the same as this in the recursive least square algorithm. Thus, most of the well known RLS modifications for the tracking timevariant parameters can be directly implemented. The algorithm performance is tested by simulation. Results with both SISO and MIMO time variant plants are obtained.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Xie, Jing, Shujiang Li, Hua Yan und Dong Yang. „Model reference adaptive control for switched linear systems using switched multiple models control strategy“. Journal of the Franklin Institute 356, Nr. 5 (März 2019): 2645–67. http://dx.doi.org/10.1016/j.jfranklin.2018.10.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Li, Wen Jun, Bai Ling An und Hong Kun Zhang. „Adaptive Multiple Impedance Control Based on Passivity“. Applied Mechanics and Materials 34-35 (Oktober 2010): 265–70. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.265.

Der volle Inhalt der Quelle
Annotation:
Adaptive multiple impedance control based on passivity is studied about two robot manipulators cooperating an object which interacts with external environment actively. The dynamic model is derived by Newton-Euler equation and the relations between the forces are analyzed. The relations between stiffness coefficient and convergence are explained by solving the differential equation when the stiffness coefficient is known. The adaptive impedance controller based on passivity is designed combining adaptive control and generalized impedance control when the stiffness coefficient is unknown. The impedance control based on internal force is adopted for the cooperative system. The simulation results prove the validity of the method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Tjahyadi, Hendra, Fangpo He und Karl Sammut. „Vibration control of a cantilever beam using multiple model adaptive resonant control“. IFAC Proceedings Volumes 37, Nr. 12 (August 2004): 409–13. http://dx.doi.org/10.1016/s1474-6670(17)31503-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Huang, Quanzhen, Suxia Chen, Mingming Huang und Zhuangzhi Guo. „Adaptive Active Noise Suppression Using Multiple Model Switching Strategy“. Shock and Vibration 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/7289076.

Der volle Inhalt der Quelle
Annotation:
Active noise suppression for applications where the system response varies with time is a difficult problem. The computation burden for the existing control algorithms with online identification is heavy and easy to cause control system instability. A new active noise control algorithm is proposed in this paper by employing multiple model switching strategy for secondary path varying. The computation is significantly reduced. Firstly, a noise control system modeling method is proposed for duct-like applications. Then a multiple model adaptive control algorithm is proposed with a new multiple model switching strategy based on filter-u least mean square (FULMS) algorithm. Finally, the proposed algorithm was implemented on Texas Instruments digital signal processor (DSP) TMS320F28335 and real time experiments were done to test the proposed algorithm and FULMS algorithm with online identification. Experimental verification tests show that the proposed algorithm is effective with good noise suppression performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Raafat, Safanah M., Ban K. Abd-AL Amear und Ayman Al-Khazraji. „Multiple model adaptive postprandial glucose control of type 1 diabetes“. Engineering Science and Technology, an International Journal 24, Nr. 1 (Februar 2021): 83–91. http://dx.doi.org/10.1016/j.jestch.2020.11.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Yang, Chao, und Yingmin Jia. „Adaptive Multiple-Model Control of A Class of Nonlinear Systems“. Journal of Robotics, Networking and Artificial Life 2, Nr. 2 (2015): 69. http://dx.doi.org/10.2991/jrnal.2015.2.2.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

WATANABE, Keigo. „A Method of Hierarchical Multiple Model Adaptive Estimation and Control“. Transactions of the Institute of Systems, Control and Information Engineers 1, Nr. 4 (1988): 127–36. http://dx.doi.org/10.5687/iscie.1.127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Boskovic, Jovan D., Joseph A. Jackson, Raman K. Mehra und Nhan T. Nguyen. „Multiple-Model Adaptive Fault-Tolerant Control of a Planetary Lander“. Journal of Guidance, Control, and Dynamics 32, Nr. 6 (November 2009): 1812–26. http://dx.doi.org/10.2514/1.42719.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Jung, Bokyung, Seong-Kyun Jeong, Dong-Hyun Lee und Youdan Kim. „ADAPTIVE RECONFIGURABLE FLIGHT CONTROL SYSTEM USING MULTIPLE MODEL MODE SWITCHING“. IFAC Proceedings Volumes 38, Nr. 1 (2005): 115–20. http://dx.doi.org/10.3182/20050703-6-cz-1902.01980.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie