Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multiple model adaptive control“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multiple model adaptive control" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multiple model adaptive control"
Kuipers, Matthew, und Petros Ioannou. „Multiple Model Adaptive Control With Mixing“. IEEE Transactions on Automatic Control 55, Nr. 8 (August 2010): 1822–36. http://dx.doi.org/10.1109/tac.2010.2042345.
Der volle Inhalt der QuelleYang, Xinhao, und Ze Li. „Congestion Control Based on Multiple Model Adaptive Control“. Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/714320.
Der volle Inhalt der QuelleLourenco, J. M. A., und J. M. Lemos. „Learning in switching multiple model adaptive control“. IEEE Instrumentation and Measurement Magazine 9, Nr. 3 (Juni 2006): 24–29. http://dx.doi.org/10.1109/mim.2006.1637975.
Der volle Inhalt der QuelleKim, Youngchol, Sunwook Choi und Taeshin Cho. „Multiple model adaptive control for interval systems“. IFAC Proceedings Volumes 32, Nr. 2 (Juli 1999): 4699–704. http://dx.doi.org/10.1016/s1474-6670(17)56801-9.
Der volle Inhalt der QuelleZhang, Yingzhao, Weicun Zhang, Xiao Wang und Handong Li. „Multiple Model Adaptive Control of Flexible Arm“. Proceedings of International Conference on Artificial Life and Robotics 24 (10.01.2019): 391–94. http://dx.doi.org/10.5954/icarob.2019.os14-2.
Der volle Inhalt der QuelleNasr, Tamer Ahmed, Hossam A. Abdel Fattah und Adel A. R. Hanafy. „Multiple-model adaptive control for interval plants“. International Journal of Control, Automation and Systems 10, Nr. 1 (Februar 2012): 11–19. http://dx.doi.org/10.1007/s12555-012-0102-5.
Der volle Inhalt der QuelleAnderson, Brian D. O., Thomas Brinsmead, Daniel Liberzon und A. Stephen Morse. „Multiple model adaptive control with safe switching“. International Journal of Adaptive Control and Signal Processing 15, Nr. 5 (2001): 445–70. http://dx.doi.org/10.1002/acs.684.
Der volle Inhalt der QuelleHespanha, Jo�o, Daniel Liberzon, A. Stephen Morse, Brian D. O. Anderson, Thomas S. Brinsmead und Franky De Bruyne. „Multiple model adaptive control. Part 2: switching“. International Journal of Robust and Nonlinear Control 11, Nr. 5 (2001): 479–96. http://dx.doi.org/10.1002/rnc.594.
Der volle Inhalt der QuelleMaybeck, P. S., und R. D. Stevens. „Reconfigurable flight control via multiple model adaptive control methods“. IEEE Transactions on Aerospace and Electronic Systems 27, Nr. 3 (Mai 1991): 470–80. http://dx.doi.org/10.1109/7.81428.
Der volle Inhalt der QuelleHe, W. G., Howard Kaufman und Rob Roy. „Multiple Model Adaptive Control Procedure for Blood Pressure Control“. IEEE Transactions on Biomedical Engineering BME-33, Nr. 1 (Januar 1986): 10–19. http://dx.doi.org/10.1109/tbme.1986.325833.
Der volle Inhalt der QuelleDissertationen zum Thema "Multiple model adaptive control"
Buchstaller, Dominic. „Robust stability and performance for multiple model switched adaptive control“. Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/72334/.
Der volle Inhalt der QuelleWang, Yu. „Adaptive control and learning using multiple models“. Thesis, Yale University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10783473.
Der volle Inhalt der QuelleAdaptation can have different objectives. Compared to a learning behavior, which is mainly to optimize the rewards/experience obtained through the learning process, adaptive control is a type of adaptation that follows a specific target guided by a controller. Although the targets may be different, the two types of adaption share common research interests.
One of the popular research techniques for studying adaptation is the use of multiple models, where the system will utilize information from multiple environment observers instead of one to improve the adaptation behavior in terms of stability, speed and accuracy. In this thesis, applications of multiple models for two types of adaptation, adaptive control and learning, will be investigated separately. For adaptive control, the research focuses on second-level adaptation, which is a new multiple-model-based approach; for learning, the multiple model concept is designed and embedded into a type of reinforcement scheme: learning automata.
The stability, robustness and performance of second-level adaptation will be first investigated in the context of various environments, including time-varying plants and noisy disturbances. Then, a new design of second-level adaptation for general systems and input-output accessible systems will be discussed. The reasons for the improved performance using second-level adaptation are analyzed theoretically. The second part of the thesis contributes to a new method of learning automata using multiple models. The method is first applied to a two-state (binary) reward environment in the simplest case, and it is later extended to the feed-forward case when multiple states or actions are presented. Finally, general reinforcement learning automata for network cases will be discussed. In all cases, simulation studies are given, wherever appropriate, to demonstrate the improvement in performance compared to conventional approaches.
Brend, O. „Implementation and experimental evaluation of multiple model switched adaptive control for FES-based rehabilitation“. Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/364612/.
Der volle Inhalt der QuelleWang, Xiaoru. „Multi-Core Implementation of F-16 Flight Surface Control System Using GA Based Multiple Model Reference Adaptive Control Algorithm“. University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302130339.
Der volle Inhalt der QuelleKamalasadan, Sukumar. „A New Generation of Adaptive Control: An Intelligent Supervisory Loop Approach“. University of Toledo / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1087223752.
Der volle Inhalt der QuelleSova, Václav. „Adaptivní řízení elektromechanických aktuátorů s využitím dopředného kompenzátoru založeného na více-modelovém přístupu“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-391815.
Der volle Inhalt der QuelleChoi, Jinbae. „Closed-Loop Optimal Control of Discrete-Time Multiple Model Linear Systems with Unknown Parameters“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1441178373.
Der volle Inhalt der QuelleNi, Lingli. „Fault-Tolerant Control of Unmanned Underwater Vehicles“. Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/28187.
Der volle Inhalt der QuellePh. D.
Pinguet, Jérémy. „Contribution à la synthèse de contrôleurs neuronaux robustes par imitation“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG002.
Der volle Inhalt der QuelleThis thesis focuses on developing control systems by imitating behaviors or decisions meeting complex requirements. The objective is to perform the learning of a neural controller efficiently and robustly on a database containing these behaviors.The chosen approach unifies robust control tools with those of neural network modeling. Methods for identifying dynamic systems are first developed according to neural structures in cohesion with the representations of linear systems with varying parameters. Access to this field of study opens the way to stability and performance analysis of these neural models.The work then proposes to exploit these properties to address the robustness issues inherent to the learning of control laws. The proposed method of identifying robust controllers is based on evaluating the stability margins of the neural feedback loop. It is then possible to consolidate the robustness of the controllers through a learning strategy with stability optimization by a multi-objective formulation. In addition, the deployment of the controllers is performed using a multi-model adaptive control method.The approach is finally applied to aircraft autopilots via a co-simulation with a flight simulator characterized by its high modeling reliability. The control issues addressed are, in the first step, to guide the aircraft according to a given heading and altitude, while a second experiment focuses on following a flight path consisting of a series of waypoints. The neural autopilots are developed by imitating an existing autopilot and then by imitating a pilot
Gendron, Sylvain. „Model weighting adaptive control“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0007/NQ44437.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Multiple model adaptive control"
Jeon, Jung Taek. Multiple model adaptive control with application to DemoDICE. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.
Den vollen Inhalt der Quelle findenJeon, Jung Taek. Multiple model adaptive control with application to DemoDICE. Ottawa: National Library of Canada, 2002.
Den vollen Inhalt der Quelle findenDatta, Aniruddha. Adaptive Internal Model Control. London: Springer London, 1998. http://dx.doi.org/10.1007/978-0-85729-331-2.
Der volle Inhalt der QuelleNguyen, Nhan T. Model-Reference Adaptive Control. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-56393-0.
Der volle Inhalt der QuelleAdaptive internal model control. London: Springer, 1998.
Den vollen Inhalt der Quelle findenGoodwin, Graham, Hrsg. Model Identification and Adaptive Control. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0711-8.
Der volle Inhalt der QuelleModel reference adaptive control of manipulators. Taunton, Somerset, England: Research Studies Press, 1990.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Model reference adaptive control of robots. Troy, N.Y: Rensselaer Polytechnic Institute, Electrical, Computer and Systems Engineering, 1991.
Den vollen Inhalt der Quelle findenRoderick, Murray-Smith, und Johansen Tor Arne, Hrsg. Multiple model approaches to modelling and control. London: Taylor & Francis, 1997.
Den vollen Inhalt der Quelle findenZourntos, Takis. Nonlinear adaptive control based on the related model. Ottawa: National Library of Canada, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Multiple model adaptive control"
Lemos, João M., Rui Neves-Silva und José M. Igreja. „Multiple Model Adaptive Control“. In Adaptive Control of Solar Energy Collector Systems, 105–30. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06853-4_4.
Der volle Inhalt der QuelleSchott, Kevin D., und B. Wayne Bequette. „Multiple Model Adaptive Control (MMAC)“. In Nonlinear Model Based Process Control, 33–57. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5094-1_2.
Der volle Inhalt der QuelleFabri, Simon G., und Visakan Kadirkamanathan. „Multiple Model Dual Adaptive Control of Spatial Multimodal Systems“. In Communications and Control Engineering, 213–41. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0319-6_10.
Der volle Inhalt der QuelleFabri, Simon G., und Visakan Kadirkamanathan. „Multiple Model Dual Adaptive Control of Jump Nonlinear Systems“. In Communications and Control Engineering, 187–212. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0319-6_9.
Der volle Inhalt der QuelleLi, Jiayi, und Weicun Zhang. „Research on Weighted Multiple Model Adaptive Control Based on U-Model“. In Lecture Notes in Electrical Engineering, 217–24. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8450-3_23.
Der volle Inhalt der QuelleNarendra, Kumpati S., Osvaldo A. Driollet und Koshy George. „Adaptive Control Using Multiple Models: A Methodology“. In Modeling, Control and Optimization of Complex Systems, 83–110. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-1139-7_5.
Der volle Inhalt der QuelleZhang, Weicun, und Qing Li. „Stable Weighted Multiple Model Adaptive Control of Continuous-Time Plant“. In Virtual Equivalent System Approach for Stability Analysis of Model-based Control Systems, 111–27. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5538-1_6.
Der volle Inhalt der QuelleZhang, Yuzhen, Weicun Zhang und Jiqiang Wang. „New Progress on Research of Weighted Multiple Model Adaptive Control“. In Lecture Notes in Electrical Engineering, 167–76. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6499-9_17.
Der volle Inhalt der QuelleJi, Zhicheng, Rongjia Zhu und Yanxia Shen. „Fuzzy Multiple Reference Models Adaptive Control Scheme Study“. In Advances in Machine Learning and Cybernetics, 387–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11739685_41.
Der volle Inhalt der QuelleZhang, Weicun, und Qing Li. „Stable Weighted Multiple Model Adaptive Control of Discrete-Time Stochastic Plant“. In Virtual Equivalent System Approach for Stability Analysis of Model-based Control Systems, 65–87. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5538-1_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multiple model adaptive control"
Burakov, M. V. „Fuzzy Multiple Model Adaptive Control“. In 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). IEEE, 2019. http://dx.doi.org/10.1109/weconf.2019.8840624.
Der volle Inhalt der QuelleBaar, Tamas, Bence Beke, Peter Bauer, Balint Vanek und Jozsef Bokor. „Smoothed multiple model adaptive estimation“. In 2016 European Control Conference (ECC). IEEE, 2016. http://dx.doi.org/10.1109/ecc.2016.7810442.
Der volle Inhalt der QuelleChang Tan, Gang Tao und Ruiyun Qi. „Direct adaptive multiple-model control schemes“. In 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580603.
Der volle Inhalt der QuelleLiu, Jiazhen, Zhenlei Wang, Xin Wang, Dahai Wang und Feng Qian. „Multiple models robust adaptive control with reduced model“. In 2010 8th IEEE International Conference on Control and Automation (ICCA). IEEE, 2010. http://dx.doi.org/10.1109/icca.2010.5524307.
Der volle Inhalt der QuelleRajagopal, A., und K. Krishnamurthy. „Adaptive Control Using Multiple Models and Model Weighting“. In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0413.
Der volle Inhalt der QuelleKnoebel, Nathan, und Jovan Boskovic. „Model Selection Analysis in Multiple Model Adaptive Control“. In AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-6063.
Der volle Inhalt der QuelleWang, Ya, Zhuo Kong und Baoyong Zhao. „Multiple-Model Adaptive Control - Disturbance Rejection Study“. In 2015 International Conference on Electromechanical Control Technology and Transportation. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icectt-15.2015.8.
Der volle Inhalt der QuelleMaybeck, P. S., und R. D. Stevens. „Reconfigurable flight control via multiple model adaptive control methods“. In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203417.
Der volle Inhalt der QuelleLourenco, J. M., und J. M. Lemos. „On-line model bank enlargement for multiple model adaptive control“. In European Control Conference 2007 (ECC). IEEE, 2007. http://dx.doi.org/10.23919/ecc.2007.7068734.
Der volle Inhalt der QuelleFisher, K. A., und P. S. Maybeck. „Multiple model adaptive estimation with filter spawning“. In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.878595.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Multiple model adaptive control"
Baum, C. C., K. L. Buescher, V. Hanagandi, R. Jones und K. Lee. Adaptive model predictive control using neural networks. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10178912.
Der volle Inhalt der QuelleCandy, J. Model Reference Adaptive Control (MRAC) for Additive Manufacturing. Office of Scientific and Technical Information (OSTI), Juni 2021. http://dx.doi.org/10.2172/1798434.
Der volle Inhalt der QuelleDurling, Mike. Direct Model Reference Adaptive Control for a Magnetic Bearing. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/767405.
Der volle Inhalt der QuelleMorris, Nancy M., William B. Rouse und Paul R. Frey. Adaptive Aiding for Symbiotic Human-Computer Control: Conceptual Model and Experimental Approach. Fort Belvoir, VA: Defense Technical Information Center, Februar 1985. http://dx.doi.org/10.21236/ada153870.
Der volle Inhalt der QuelleEguchi, Hiroaki, Takanori Fukao und Koichi Osuka. Design Method of Reference Model for Active Steering Based on Nonlinear Adaptive D* Control. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0423.
Der volle Inhalt der QuelleHardt, D. E., E. Papadpoulos und A. Suzuki. Study of reduced order model reference adaptive control systems for improved process control. Final report, May 1, 1982-January 31, 1986. Office of Scientific and Technical Information (OSTI), Februar 1986. http://dx.doi.org/10.2172/6114568.
Der volle Inhalt der QuelleHeinz, Kevin, Itamar Glazer, Moshe Coll, Amanda Chau und Andrew Chow. Use of multiple biological control agents for control of western flower thrips. United States Department of Agriculture, 2004. http://dx.doi.org/10.32747/2004.7613875.bard.
Der volle Inhalt der QuelleHuang, Hui-Min. Outline of a multiple dimensional reference model architecture and a knowledge engineering methodology for intelligent systems control. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5643.
Der volle Inhalt der QuelleWegner, Michael D. Physician Provider Profiling in Brooke Army Medical Center's Internal Medicine Clinic: A Multiple Regression and Process Control Model. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1999. http://dx.doi.org/10.21236/ada420371.
Der volle Inhalt der QuellePruitt, Bruce, K. Killgore, William Slack und Ramune Matuliauskaite. Formulation of a multi-scale watershed ecological model using a statistical approach. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38862.
Der volle Inhalt der Quelle