Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multioutput regression“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multioutput regression" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multioutput regression"
Tian, Qing, Meng Cao, Songcan Chen und Hujun Yin. „Structure-Exploiting Discriminative Ordinal Multioutput Regression“. IEEE Transactions on Neural Networks and Learning Systems 32, Nr. 1 (Januar 2021): 266–80. http://dx.doi.org/10.1109/tnnls.2020.2978508.
Der volle Inhalt der QuelleLi, Shunlong, Huiming Yin, Zhonglong Li, Wencheng Xu, Yao Jin und Shaoyang He. „Optimal sensor placement for cable force monitoring based on multioutput support vector regression model“. Advances in Structural Engineering 21, Nr. 15 (07.05.2018): 2259–69. http://dx.doi.org/10.1177/1369433218772342.
Der volle Inhalt der QuelleTuia, D., J. Verrelst, L. Alonso, F. Perez-Cruz und G. Camps-Valls. „Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation“. IEEE Geoscience and Remote Sensing Letters 8, Nr. 4 (Juli 2011): 804–8. http://dx.doi.org/10.1109/lgrs.2011.2109934.
Der volle Inhalt der QuelleKONDO, Tadashi. „Multiinput-Multioutput Type GMDH Algorithm Using Regression-Principal Component Analysis“. Transactions of the Institute of Systems, Control and Information Engineers 6, Nr. 11 (1993): 520–29. http://dx.doi.org/10.5687/iscie.6.520.
Der volle Inhalt der QuelleYun, Seokheon. „Performance Analysis of Construction Cost Prediction Using Neural Network for Multioutput Regression“. Applied Sciences 12, Nr. 19 (24.09.2022): 9592. http://dx.doi.org/10.3390/app12199592.
Der volle Inhalt der QuelleWang, Yu, und Guohua Liu. „MLA-TCN: Multioutput Prediction of Dam Displacement Based on Temporal Convolutional Network with Attention Mechanism“. Structural Control and Health Monitoring 2023 (25.08.2023): 1–19. http://dx.doi.org/10.1155/2023/2189912.
Der volle Inhalt der QuelleWu, Shengbiao, Huaning Li und Xianpeng Chen. „Parametric Model for Coaxial Cavity Filter with Combined KCCA and MLSSVR“. International Journal of Antennas and Propagation 2023 (07.06.2023): 1–10. http://dx.doi.org/10.1155/2023/2024720.
Der volle Inhalt der QuelleHuang, Kai, Ming-Yi You, Yun-Xia Ye, Bin Jiang und An-Nan Lu. „Direction of Arrival Based on the Multioutput Least Squares Support Vector Regression Model“. Mathematical Problems in Engineering 2020 (30.09.2020): 1–8. http://dx.doi.org/10.1155/2020/8601376.
Der volle Inhalt der QuelleRosentreter, Johannes, Ron Hagensieker, Akpona Okujeni, Ribana Roscher, Paul D. Wagner und Bjorn Waske. „Subpixel Mapping of Urban Areas Using EnMAP Data and Multioutput Support Vector Regression“. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10, Nr. 5 (Mai 2017): 1938–48. http://dx.doi.org/10.1109/jstars.2017.2652726.
Der volle Inhalt der QuelleZhen, Xiantong, Heye Zhang, Ali Islam, Mousumi Bhaduri, Ian Chan und Shuo Li. „Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression“. Medical Image Analysis 36 (Februar 2017): 184–96. http://dx.doi.org/10.1016/j.media.2016.11.008.
Der volle Inhalt der QuelleDissertationen zum Thema "Multioutput regression"
Elimam, Rayane. „Apprentissage automatique pour la prédiction de performances : du sport à la santé“. Electronic Thesis or Diss., IMT Mines Alès, 2024. https://theses.hal.science/tel-04805708.
Der volle Inhalt der QuelleNumerous performance indicators exist in sport and health (recovery, rehabilitation, etc.), allowing us to characterize different sporting and therapeutic criteria.These different types of performance generally depend on the workload (or rehabilitation) undergone by athletes or patients.In recent years, many applications of machine learning to sport and health have been proposed.Predicting or even explaining performance based on workload data could help optimize training or therapy.In this context, the management of missing data and the articulation between load types and the various performance indicators considered represent the 2 issues addressed in this manuscript through 4 applications. The first 2 concern the management of missing data through uncertain modeling performed on (i) highly incomplete professional soccer data and (ii) artificially noisy COVID-19 data. For these 2 contributions, we have combined credibilistic uncertainty models, based on the theory of belief functions, with various imputation methods adapted to the chronological context of training/matches and therapies.Once the missing data had been imputed in the form of belief functions, the credibilistic $k$ nearest-neighbor model adapted to regression was used to take advantage of the uncertain uncertainty patterns associated with the missing data. In the context of predicting performance in handball matches as a function of past workloads, multi-output regression models are used to simultaneously predict 7 athletic and technical performance indicators. The final application concerns the rehabilitation of post-stroke patients who have partially lost the use of one arm. In order to detect patients not responding to therapy, the problem of predicting different rehabilitation criteria has enabled the various contributions of this manuscript (credibilistic imputation of missing data and multiscore regression for the simultaneous prediction of different performance indicators
Buchteile zum Thema "Multioutput regression"
Silalahi, Margaretha Gracia Hotmatua, Muhammad Ahsan und Muhammad Hisyam Lee. „Statistical Quality Control of NPK Fertilizer Production Process using Mixed Dual Multivariate Cumulative Sum (MDMCUSUM) Chart based on Multioutput Least Square Support Vector Regression (MLS-SVR)“. In Advances in Computer Science Research, 4–13. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-332-0_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multioutput regression"
emami, seyedsaman, und Gonzalo Martínez-Muñoz. „Multioutput Regression Neural Network Training via Gradient Boosting“. In ESANN 2022 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2022. http://dx.doi.org/10.14428/esann/2022.es2022-95.
Der volle Inhalt der QuelleShao, Yiping, Shichang Du und Lifeng Xi. „3D Machined Surface Topography Forecasting With Space-Time Multioutput Support Vector Regression Using High Definition Metrology“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67155.
Der volle Inhalt der QuelleGainitdinov, Batyrkhan, Yury Meshalkina, Denis Orlova, Evgeny Chekhonin, Julia Zagranovskaya, Dmitri Koroteeva und Yury Popov. „Predicting Mineralogical Composition in Unconventional Formations Using Machine Learning and Well Logging Data“. In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23487-ea.
Der volle Inhalt der Quelle