Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multiomic integration“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multiomic integration" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multiomic integration"
Ugidos, Manuel, Sonia Tarazona, José M. Prats-Montalbán, Alberto Ferrer und Ana Conesa. „MultiBaC: A strategy to remove batch effects between different omic data types“. Statistical Methods in Medical Research 29, Nr. 10 (04.03.2020): 2851–64. http://dx.doi.org/10.1177/0962280220907365.
Der volle Inhalt der QuelleBlutt, Sarah E., Cristian Coarfa, Josef Neu und Mohan Pammi. „Multiomic Investigations into Lung Health and Disease“. Microorganisms 11, Nr. 8 (19.08.2023): 2116. http://dx.doi.org/10.3390/microorganisms11082116.
Der volle Inhalt der QuelleRamos, Marcel, Ludwig Geistlinger, Sehyun Oh, Lucas Schiffer, Rimsha Azhar, Hanish Kodali, Ino de Bruijn et al. „Multiomic Integration of Public Oncology Databases in Bioconductor“. JCO Clinical Cancer Informatics, Nr. 4 (Oktober 2020): 958–71. http://dx.doi.org/10.1200/cci.19.00119.
Der volle Inhalt der QuelleHatami, Elham, Hye-Won Song, Hongduan Huang, Zhiqi Zhang, Thomas McCarthy, Youngsook Kim, Ruifang Li et al. „Integration of single-cell transcriptomic and chromatin accessibility on heterogenicity of human peripheral blood mononuclear cells utilizing microwell-based single-cell partitioning technology“. Journal of Immunology 212, Nr. 1_Supplement (01.05.2024): 1508_5137. http://dx.doi.org/10.4049/jimmunol.212.supp.1508.5137.
Der volle Inhalt der QuelleAntequera-González, Borja, Neus Martínez-Micaelo, Carlos Sureda-Barbosa, Laura Galian-Gay, M. Sol Siliato-Robles, Carmen Ligero, Artur Evangelista und Josep M. Alegret. „Specific Multiomic Profiling in Aortic Stenosis in Bicuspid Aortic Valve Disease“. Biomedicines 12, Nr. 2 (06.02.2024): 380. http://dx.doi.org/10.3390/biomedicines12020380.
Der volle Inhalt der QuelleSilberberg, Gilad, Clare Killick-Cole, Yaron Mosesson, Haia Khoury, Xuan Ren, Mara Gilardi, Daniel Ciznadija, Paolo Schiavini, Marianna Zipeto und Michael Ritchie. „Abstract 854: A pharmaco-pheno-multiomic integration analysis of pancreatic cancer: A highly predictive biomarker model of biomarkers of Gemcitabine/Abraxane sensitivity and resistance“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 854. http://dx.doi.org/10.1158/1538-7445.am2023-854.
Der volle Inhalt der QuelleCulley, Christopher, Supreeta Vijayakumar, Guido Zampieri und Claudio Angione. „A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth“. Proceedings of the National Academy of Sciences 117, Nr. 31 (16.07.2020): 18869–79. http://dx.doi.org/10.1073/pnas.2002959117.
Der volle Inhalt der QuellePratapa, Aditya, Lydia Hernandez, Bassem Ben Cheikh, Niyati Jhaveri und Arutha Kulasinghe. „Abstract 5503: Ultrahigh-plex spatial phenotyping of head and neck cancer tissue uncovers multiomic signatures of immunotherapy response“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 5503. http://dx.doi.org/10.1158/1538-7445.am2024-5503.
Der volle Inhalt der QuelleSignorelli, Mirko, Roula Tsonaka, Annemieke Aartsma-Rus und Pietro Spitali. „Multiomic characterization of disease progression in mice lacking dystrophin“. PLOS ONE 18, Nr. 3 (31.03.2023): e0283869. http://dx.doi.org/10.1371/journal.pone.0283869.
Der volle Inhalt der QuelleSilberberg, Gilad, Bandana Vishwakarama, Brandon Walling, Chelsea Riveley, Alessandra Audia, Marianna Zipeto, Ido Sloma, Amy Wesa und Michael Ritchie. „Abstract 3907: A pheno-multiomic integration analysis of primary samples of acute myeloid leukemia reveals biomarkers of cytarabine resistance“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 3907. http://dx.doi.org/10.1158/1538-7445.am2022-3907.
Der volle Inhalt der QuelleDissertationen zum Thema "Multiomic integration"
Bretones, Santamarina Jorge. „Integrated multiomic analysis, synthetic lethality inference and network pharmacology to identify SWI/SNF subunit-specific pathway alterations and targetable vulnerabilities“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL049.
Der volle Inhalt der QuelleNowadays the cancer community agrees on the need for patient-tailored diagnostics and therapies, which calls for the design of translational studies combining experimental and statistical approaches. Current challenges include the validation of preclinical experimental models and their multi-omics profiling, along with the design of dedicated bioinformatics and mathematical pipelines (i.e. dimension reduction, multi-omics integration, mechanism-based digital twins) for identifying patient-specific optimal drug combinations.To address these challenges, we designed bioinformatics and statistical approaches to analyze various large-scale data types and integrate them to identify targetable vulnerabilities in cancer cell lines. We developed our pipeline in the context of alterations of the SWItch Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SWI/SNF mutations occur in ~20% of all cancers, but such malignancies still lack efficient therapies. We leveraged a panel of HAP1 isogenic cell lines mutated for SWI/SNF subunits or other epigenetic enzymes for which transcriptomics, proteomics and drug screening data were available.We worked on four methodological axes, the first one being the design of an optimized pathway enrichment pipeline to detect pathways differentially activated in the mutants against the wild-type. We developed a pruning algorithm to reduce gene and pathway redundancy in the Reactome database and improve the interpretability of the results. We evidenced the bad performance of first-generation enrichment methods and proposed to combine the topology-based method ROntoTools with pre-ranked GSEA to increase enrichment performance .Secondly, we analyzed drug screens, processed drug-gene interaction databases to obtain genes and pathways targeted by effective drugs and integrated them with proteomics enrichment results to infer targetable vulnerabilities selectively harming mutant cell lines. The validation of potential targets was achieved using a novel method detecting synthetic lethality from transcriptomics and CRISPR data of independent cancer cell lines in DepMap, run for each studied epigenetic enzyme. Finally, to further inform multi-agent therapy optimization, we designed a first digital representation of targetable pathways for SMARCA4-mutated tumors by building a directed protein-protein interaction network connecting targets inferred from multi-omics HAP1 and DepMap CRISPR analyses. We used the OmniPath database to retrieve direct protein interactions and added the connecting neighboring genes with the Neko algorithm.These methodological developments were applied to the HAP1 panel datasets. Using our optimized enrichment pipeline, we identified Metabolism of proteins as the most frequently dysregulated pathway category in SWI/SNF-KO lines. Next, the drug screening analysis revealed cytotoxic and epigenetic drugs selectively targeting SWI/SNF mutants, including CBP/EP300 or mitochondrial respiration inhibitors, also identified as synthetic lethal by our Depmap CRISPR analysis. Importantly, we validated these findings in two independent isogenic cancer-relevant experimental models. The Depmap CRISPR analysis was also used in a separate project to identify synthetic lethal interactions in glioblastoma, which proved relevant for patient-derived cell lines and are being validated in dedicated drug screens.To sum up, we developed computational methods to integrate multi-omics expression data with drug screening and CRISPR assays and identified new vulnerabilities in SWI/SNF mutants which were experimentally revalidated. This study was limited to the identification of effective single agents. As a future direction, we propose to design mathematical models representing targetable protein networks using differential equations and their use in numerical optimization and machine learning procedures as a key tool to investigate concomitant druggable targets and personalize drug combinations
Coronado, Zamora Marta. „Mapping natural selection through the drosophila melanogaster development following a multiomics data integration approach“. Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/666761.
Der volle Inhalt der QuelleCharles Darwin's theory of evolution proposes that the adaptations of organisms arise because of the process of natural selection. Natural selection leaves a characteristic footprint on the patterns of genetic variation that can be detected by means of statistical methods of genomic analysis. Today, we can infer the action of natural selection in a genome and even quantify what proportion of the incorporated genetic variants in the populations are adaptive. The genomic era has led to the paradoxical situation in which much more evidence of selection is available on the genome than on the phenotype of the organism, the primary target of natural selection. The advent of next-generation sequencing (NGS) technologies is providing a vast amount of -omics data, especially increasing the breadth of available developmental transcriptomic series. In contrast to the genome of an organism, the transcriptome is a phenotype that varies during the lifetime and across different body parts. Studying a developmental transcriptome from a population genomic and spatio-temporal perspective is a promising approach to understand the genetic and developmental basis of the phenotypic change. This thesis is an integrative population genomics and evolutionary biology project following a bioinformatic approach. It is performed in three sequential steps: (i) the comparison of different variations of the McDonald and Kreitman test (MKT), a method to detect recurrent positive selection on coding sequences at the molecular level, using empirical data from a North American population of D. melanogaster and simulated data, (ii) the inference of the genome features correlated with the evolutionary rate of protein-coding genes, and (iii) the integration of patterns of genomic variation with annotations of large sets of spatio-temporal developmental data (evo-dev-omics). As a result of this approach, we have carried out two different studies integrating the patterns of genomic diversity with multiomics layers across developmental time and space. In the first study we give a global perspective on how natural selection acts during the whole life cycle of D. melanogaster, assessing whether different regimes of selection act through the developmental stages. In the second study, we draw an exhaustive map of selection acting on the complete embryo anatomy of D. melanogaster. Taking all together, our results show that genes expressed in mid- and late-embryonic development stages exhibit the highest sequence conservation and the most complex structure: they are larger, consist of more exons and longer introns, encode a large number of isoforms and, on average, are highly expressed. Selective constraint is pervasive, particularly on the digestive and nervous systems. On the other hand, earlier stages of embryonic development are the most divergent, which seems to be due to the diminished efficiency of natural selection on maternal-effect genes. Additionally, genes expressed in these first stages have on average the shortest introns, probably due to the need for a rapid and efficient expression during the short cell cycles. Adaptation is found in the structures that also show evidence of adaptation in the adult, the immune and reproductive systems. Finally, genes that are expressed in one or a few different anatomical structures are younger and have higher rates of evolution, unlike genes that are expressed in all or almost all structures. Population genomics is no longer a theoretical science, it has become an interdisciplinary field where bioinformatics, large functional -omics datasets, statistical and evolutionary models and emerging molecular techniques are all integrated to get a systemic view of the causes and consequences of evolution. The integration of population genomics with other phenotypic multiomics data is the necessary step to gain a global picture of how adaptation occurs in nature.
Bodily, Weston Reed. „Integrative Analysis to Evaluate Similarity Between BRCAness Tumors and BRCA Tumors“. BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6800.
Der volle Inhalt der QuelleBuchteile zum Thema "Multiomic integration"
Lee, Jae Jin, Philip Sell und Hyungjin Eoh. „Multiomics Integration of Tuberculosis Pathogenesis“. In Integrated Science, 937–67. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15955-8_45.
Der volle Inhalt der QuelleHajYasien, Ahmed. „Introduction to Multiomics Technology“. In Machine Learning Methods for Multi-Omics Data Integration, 1–11. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36502-7_1.
Der volle Inhalt der QuelleLiu, Qian, Shujun Huang, Zhongyuan Zhang, Ted M. Lakowski, Wei Xu und Pingzhao Hu. „Multiomics-Based Tensor Decomposition for Characterizing Breast Cancer Heterogeneity“. In Machine Learning Methods for Multi-Omics Data Integration, 133–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36502-7_8.
Der volle Inhalt der QuelleNing, Kang, und Yuxue Li. „Synthetic Biology-Related Multiomics Data Integration and Data Mining Techniques“. In Synthetic Biology and iGEM: Techniques, Development and Safety Concerns, 31–38. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2460-8_3.
Der volle Inhalt der QuelleKamar, Mohd Danish, Madhu Bala, Gaurav Prajapati und Ratan Singh Ray. „Multiomics Data Integration in Understanding of Inflammation and Inflammatory Diseases“. In Inflammation Resolution and Chronic Diseases, 235–43. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0157-5_11.
Der volle Inhalt der QuelleIslam, Mousona. „Strategic Short Note: Integration of Multiomics Approaches for Sustainable Crop Improvement“. In IoT and AI in Agriculture, 149–53. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1263-2_9.
Der volle Inhalt der QuelleZhang, Tianyu, Liwei Zhang, Philip R. O. Payne und Fuhai Li. „Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models“. In Methods in Molecular Biology, 223–38. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0849-4_12.
Der volle Inhalt der QuelleSekar, Aishwarya, und Gunasekaran Krishnasamy. „Integrating Machine Learning Strategies with Multiomics to Augment Prognosis of Chronic Diseases“. In Bioinformatics and Computational Biology, 87–97. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003331247-9.
Der volle Inhalt der QuelleLee, Hayan, Gilbert Feng, Ed Esplin und Michael Snyder. „Predictive Signatures for Lung Adenocarcinoma Prognostic Trajectory by Multiomics Data Integration and Ensemble Learning“. In Mathematical and Computational Oncology, 9–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91241-3_2.
Der volle Inhalt der QuelleMarín de Mas, Igor. „Multiomic Data Integration and Analysis via Model-Driven Approaches“. In Comprehensive Analytical Chemistry, 447–76. Elsevier, 2018. http://dx.doi.org/10.1016/bs.coac.2018.07.005.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multiomic integration"
Bhattacharyya, Rupam, Nicholas Henderson und Veerabhadran Baladandayuthapani. „BaySyn: Bayesian Evidence Synthesis for Multi-system Multiomic Integration“. In Pacific Symposium on Biocomputing 2023. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811270611_0026.
Der volle Inhalt der QuelleSinghal, Pankhuri, Shefali S. Verma, Scott M. Dudek und Marylyn D. Ritchie. „Neural network-based multiomics data integration in Alzheimer's disease“. In GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3321920.
Der volle Inhalt der QuelleBhat, Aadil Rashid, und Rana Hashmy. „Artificial Intelligence-based Multiomics Integration Model for Cancer Subtyping“. In 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). IEEE, 2022. http://dx.doi.org/10.23919/indiacom54597.2022.9763283.
Der volle Inhalt der QuelleJiang, Yuexu, Yanchun Liang, Duolin Wang, Dong Xu und Trupti Joshi. „IMPRes: Integrative MultiOmics pathway resolution algorithm and tool“. In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8218016.
Der volle Inhalt der QuelleWheelock, Åsa M. „Multiomics integration-based molecular characterizations in COPD and post-COVID“. In RExPO23. REPO4EU, 2023. http://dx.doi.org/10.58647/rexpo.23033.
Der volle Inhalt der QuelleJagtap, Surabhi, Abdulkadir Celikkanat, Aurelic Piravre, Frederiuue Bidard, Laurent Duval und Fragkiskos D. Malliaros. „Multiomics Data Integration for Gene Regulatory Network Inference with Exponential Family Embeddings“. In 2021 29th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco54536.2021.9616279.
Der volle Inhalt der QuelleKoca, Mehmet Burak, und Fatih Erdoğan Sevilgen. „Comparative Analysis of Fusion Techniques for Integrating Single-cell Multiomics Datasets“. In 2024 32nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2024. http://dx.doi.org/10.1109/siu61531.2024.10601063.
Der volle Inhalt der QuelleSingh, Satishkumar, Fouad Choueiry, Amber Hart, Anuvrat Sircar, Jiangjiang Zhu und Lalit Sehgal. „Abstract 2351: Multiomics integration elucidates onco-metabolic modulators of drug resistance in lymphoma“. In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-2351.
Der volle Inhalt der QuelleBareche, Yacine, David Venet, Philippe Aftimos, Michail Ignatiadis, Martine Piccart, Francoise Rothe und Christos Sotiriou. „Abstract 3698: Unraveling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3698.
Der volle Inhalt der QuelleAlkhateeb, Abedalrhman, Li Zhou, Ashraf Abou Tabl und Luis Rueda. „Deep Learning Approach for Breast Cancer InClust 5 Prediction based on Multiomics Data Integration“. In BCB '20: 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3388440.3415992.
Der volle Inhalt der Quelle