Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multinomial mixture model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multinomial mixture model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multinomial mixture model"
Malyutov, M. B., und D. A. Stolyarenko. „On Multisample Multinomial Mixture Model“. American Journal of Mathematical and Management Sciences 21, Nr. 1-2 (Januar 2001): 101–7. http://dx.doi.org/10.1080/01966324.2001.10737540.
Der volle Inhalt der QuelleBashir, Shaheena, und Edward M. Carter. „Penalized multinomial mixture logit model“. Computational Statistics 25, Nr. 1 (14.08.2009): 121–41. http://dx.doi.org/10.1007/s00180-009-0165-9.
Der volle Inhalt der QuelleHolland, Mark D., und Brian R. Gray. „Multinomial mixture model with heterogeneous classification probabilities“. Environmental and Ecological Statistics 18, Nr. 2 (28.01.2010): 257–70. http://dx.doi.org/10.1007/s10651-009-0131-2.
Der volle Inhalt der QuelleMazarura, Jocelyn, Alta de Waal und Pieter de Villiers. „A Gamma-Poisson Mixture Topic Model for Short Text“. Mathematical Problems in Engineering 2020 (29.04.2020): 1–17. http://dx.doi.org/10.1155/2020/4728095.
Der volle Inhalt der QuelleBecker, Mark P., und Ilsoon Yang. „7. Latent Class Marginal Models for Cross-Classifications of Counts“. Sociological Methodology 28, Nr. 1 (August 1998): 293–325. http://dx.doi.org/10.1111/0081-1750.00050.
Der volle Inhalt der QuellePortela, J. „Clustering Discrete Data Through the Multinomial Mixture Model“. Communications in Statistics - Theory and Methods 37, Nr. 20 (22.09.2008): 3250–63. http://dx.doi.org/10.1080/03610920802162623.
Der volle Inhalt der QuelleCruz-Medina, I. R., T. P. Hettmansperger und H. Thomas. „Semiparametric mixture models and repeated measures: the multinomial cut point model“. Journal of the Royal Statistical Society: Series C (Applied Statistics) 53, Nr. 3 (August 2004): 463–74. http://dx.doi.org/10.1111/j.1467-9876.2004.05203.x.
Der volle Inhalt der QuelleLi, Minqiang, und Liang Zhang. „Multinomial mixture model with feature selection for text clustering“. Knowledge-Based Systems 21, Nr. 7 (Oktober 2008): 704–8. http://dx.doi.org/10.1016/j.knosys.2008.03.025.
Der volle Inhalt der QuelleHonda, Katsuhiro, Shunnya Oshio und Akira Notsu. „Fuzzy Co-Clustering Induced by Multinomial Mixture Models“. Journal of Advanced Computational Intelligence and Intelligent Informatics 19, Nr. 6 (20.11.2015): 717–26. http://dx.doi.org/10.20965/jaciii.2015.p0717.
Der volle Inhalt der QuelleLijoi, Antonio, Igor Prünster und Tommaso Rigon. „The Pitman–Yor multinomial process for mixture modelling“. Biometrika 107, Nr. 4 (05.06.2020): 891–906. http://dx.doi.org/10.1093/biomet/asaa030.
Der volle Inhalt der QuelleDissertationen zum Thema "Multinomial mixture model"
Frühwirth-Schnatter, Sylvia, und Rudolf Frühwirth. „Bayesian Inference in the Multinomial Logit Model“. Austrian Statistical Society, 2012. http://epub.wu.ac.at/5629/1/186%2D751%2D1%2DSM.pdf.
Der volle Inhalt der QuelleVellala, Abhinay. „Genre-based Video Clustering using Deep Learning : By Extraction feature using Object Detection and Action Recognition“. Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176942.
Der volle Inhalt der QuelleBarus, Lita Sari. „Contribution to the intercity modal choise considering the intracity transport systems : application of an adapted mixed multinomial Logit model for the Jakarta-Bandung corridor“. Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2223/document.
Der volle Inhalt der QuelleAn ideal city or intercity transport system is one where all the transport networks, involving in general different modes of transport, could serve together the cities connections to fulfill a passenger demand and satisfaction. Each transport network should have a logical layout (as possible with minimum discontinuities) to meet the required demands. Also in that ideal system, the different modes of transport should not only have their own good performances but also the exchange between modes should be done with harmony. The conditions as mentioned above are worldwide challenges. The present work deals with the transportation problematic between two Indonesian cities, and also with the high modal competition on the Jakarta-Bandung corridor. On that corridor, road transport is currently the main demanding mode for passengers transportation. The airlines cannot compete and discontinued their operations to this route. Nowadays, railway transport is decaying. Passengers preferences are the main variables for the final modal choice. It is necessary to know preferences due to their decisions impacts to choose one mode over the others. Those preferences are in fact not simple to express in a complex city and intercity transport system. In transportation, the Logit model is widely used as a method to explore the problematic of modal choices involving a lot of different variables. There are several Logit models already developed, such as “General Extreme Value”, “Probit”, and “Nested model”, but in this research, they are not compatible to solve our defined problems because there are some particular identified variables to be taken into account. Therefore we propose the "Adapted Mixed Multinomial Logit (AMML)" Model as a tool for analysis towards passenger's decision in modal choices. On the Jakarta-Bandung corridor, modal choices are influenced by the encountered problems in intercity transport at origin and destination. One part on this research deals with identification and understanding of the intracity transport problems of origin and destination on the choice of transport mode in Jakarta-Bandung corridor (Jakarta-Bandung and Bandung-Jakarta direction). The second part of this research deals with the final decision process by analyzing the results of questionnaires addressed to many users of the Jakarta-Bandung corridor. The five main variables of the last questionnaire are travel time, overall cost, security conditions, quality of travel information and connectivity conditions relevant to intercity transport and intracities transport conditions as well. After validation of the questionaires, this research uses the AMML model to get final decision result by comparing one mode among three intercity transport mode (train, minibus, and car) using the values of the variables. Taking into account the characteristics of each intercity mode of transportation, the analysis identifies the most competitive intercity transport mode for each situation from departure city to arrival city. Using alternative public and private transport modes policies, one could in the future modify passenger choice on intercity transport mode. Therefore, this study is relevant for improving of intracity and intercity transport systems
Silvestre, Cláudia Marisa Vasconcelos. „Clustering with discrete mixture models: An integrated approach for model selection“. Doctoral thesis, 2014. http://hdl.handle.net/10071/9991.
Der volle Inhalt der QuelleResearch on cluster analysis continues to develop. Identifying the number of clusters and selecting a subset of relevant variables available in the data have been active areas in research on clustering methods. The approaches proposed for addressing these issues are mostly designed to deal with numerical data and cannot be directly applied for clustering categorical data. This work intends to be a contribution to handling categorical data, in this area.
Tomita, Y. „Multinomial mixture vector autoregressive models /“. 2003. http://wwwlib.umi.com/dissertations/fullcit/3108778.
Der volle Inhalt der QuellePan, Zhen Yu. „Large margin multinomial mixture models for document classification /“. 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR51574.
Der volle Inhalt der QuelleTypescript. Includes bibliographical references (leaves 88-90). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR51574
Hu, Jingchen. „Dirichlet Process Mixture Models for Nested Categorical Data“. Diss., 2015. http://hdl.handle.net/10161/9933.
Der volle Inhalt der QuelleThis thesis develops Bayesian latent class models for nested categorical data, e.g., people nested in households. The applications focus on generating synthetic microdata for public release and imputing missing data for household surveys, such as the 2010 U.S. Decennial Census.
The first contribution is methods for evaluating disclosure risks in fully synthetic categorical data. I quantify disclosure risks by computing Bayesian posterior probabilities that intruders can learn confidential values given the released data and assumptions about their prior knowledge. I demonstrate the methodology on a subset of data from the American Community Survey (ACS). The methods can be adapted to synthesizers for nested data, as demonstrated in later chapters of the thesis.
The second contribution is a novel two-level latent class model for nested categorical data. Here, I assume that all configurations of groups and units are theoretically possible. I use a nested Dirichlet Process prior distribution for the class membership probabilities. The nested structure facilitates simultaneous modeling of variables at both group and unit levels. I illustrate the modeling by generating synthetic data and imputing missing data for a subset of data from the 2012 ACS household data. I show that the model can capture within group relationships more effectively than standard one-level latent class models.
The third contribution is a version of the nested latent class model adapted for theoretically impossible combinations, e.g. a household with two household heads or a child older than her biological father. This version assigns zero probability to those impossible groups and units. I present a proof that the Markov Chain Monte Carlo (MCMC) sampling strategy estimates the desired target distribution. I illustrate this model by generating synthetic data and imputing missing data for a subset of data from the 2011 ACS household data. The results indicate that this version can estimate the joint distribution more effectively than the previous version.
Dissertation
Calado, Claudia da Encarnação. „Modelos de mistura em CRM: uma aplicação à segmentação no sector bancário“. Master's thesis, 2008. http://hdl.handle.net/10071/1755.
Der volle Inhalt der QuelleActualmente, os modelos de Mistura são considerados um dos métodos de segmentação mais eficientes na área de Marketing para o estudo das estruturas de preferências. Com base numa amostra de clientes de uma Instituição Financeira, numa primeira fase, será realizada uma segmentação com base nos modelos de mistura finita, de forma a perceber as estruturas de necessidades de produtos financeiros. Com base nas perfilagens dos segmentos, será possível efectuar a avaliação da necessidade ou não de desenvolvimento de estratégias diferenciadas consoante os segmentos obtidos de forma a aumentar o valor da rendibilidade dos clientes já existentes, adequando assim a oferta de produtos. Nesta fase, serão obtidas as probabilidades de pertença a posteriori para classificar novos clientes nos segmentos mais adequados, permitindo contactar o cliente da melhor forma e com a melhor oferta. Numa segunda fase, será utilizado o modelo de mistura de regressões para perceber o impacto das acções de Marketing nos produtos detidos pelos clientes. Admitindo a existência de heterogeneidade das necessidades financeiras dos clientes, e colocando a hipótese de que as mesmas são explicadas com base nas acções de marketing realizadas, pretende obter-se um conjunto de estimativas de regressão para cada segmento identificado. A obtenção dessas estimativas de regressão, consoante a significância estatística, irá fornecer um maior conhecimento sobre a adequação da actual estratégia de marketing definida, e perceber a necessidade de afinação ou não da mesma consoante o segmento.
Nowadays, finite mixture models are one of the most efficient segmentation technique in the marketing field, in order to analyse structures of preferences in a given population. Based on a sample of clients of a given Financial Institution, the first step of this study applies a finite mixture model to understand the existing structures of financial needs of the clients. Based on the profiled segments, the need of developing different marketing strategies for each segment will be assessed, in order to increase the profit of the actual clients due to a correct contact strategy and offer of products. The probabilities of belonging to a certain segment will be obtained in order to alocate new clients in the most adequate segment, allowing to reach the clients with the best contact and offer of products strategy. In a second step, a regression mixture model will be applied to understand the impact of the actual marketing strategy in the portfolio of products of the clients. Assuming the existence of the heterogeneity in the financial needs of the clients and the fact that these needs can be explained by the acquisition campaigns, a set of regression models are estimated for each segment. Depending on the significance of this regression estimates, one understands the adequacy of the actual defined marketing strategy and decides if there is the need of improvement depending on the segment.
Buchteile zum Thema "Multinomial mixture model"
Novovičová, Jana, und Antonín Malík. „Application of Multinomial Mixture Model to Text Classification“. In Pattern Recognition and Image Analysis, 646–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44871-6_75.
Der volle Inhalt der QuelleAdams, Raymond J., und Margaret L. Wu. „The Mixed-Coefficients Multinomial Logit Model: A Generalized Form of the Rasch Model“. In Multivariate and Mixture Distribution Rasch Models, 57–75. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49839-3_4.
Der volle Inhalt der QuelleHannachi, Samar, Fatma Najar und Nizar Bouguila. „Short Text Clustering Using Generalized Dirichlet Multinomial Mixture Model“. In Recent Challenges in Intelligent Information and Database Systems, 149–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1685-3_13.
Der volle Inhalt der QuelleNajar, Fatma, und Nizar Bouguila. „Happiness Analysis with Fisher Information of Dirichlet-Multinomial Mixture Model“. In Advances in Artificial Intelligence, 438–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47358-7_45.
Der volle Inhalt der QuelleSason, Itay, Damian Wojtowicz, Welles Robinson, Mark D. M. Leiserson, Teresa M. Przytycka und Roded Sharan. „A Sticky Multinomial Mixture Model of Strand-Coordinated Mutational Processes in Cancer“. In Lecture Notes in Computer Science, 243–55. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17083-7_15.
Der volle Inhalt der QuelleShi, Rui, Tat-Seng Chua, Chin-Hui Lee und Sheng Gao. „Bayesian Learning of Hierarchical Multinomial Mixture Models of Concepts for Automatic Image Annotation“. In Lecture Notes in Computer Science, 102–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11788034_11.
Der volle Inhalt der QuellePushpalatha M N und Mrunalini M. „Predicting the Severity of Open Source Bug Reports Using Unsupervised and Supervised Techniques“. In Research Anthology on Usage and Development of Open Source Software, 676–92. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-9158-1.ch035.
Der volle Inhalt der QuelleKéry, Marc, und J. Andrew Royle. „Modeling Abundance Using Multinomial N-Mixture Models“. In Applied Hierarchical Modeling in Ecology, 313–92. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-801378-6.00007-2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multinomial mixture model"
Pan, Zhen-Yu, und Hui Jiang. „Large margin multinomial mixture model for text categorization“. In Interspeech 2008. ISCA: ISCA, 2008. http://dx.doi.org/10.21437/interspeech.2008-258.
Der volle Inhalt der QuelleDuan, Ruting, und Chunping Li. „An Adaptive Dirichlet Multinomial Mixture Model for Short Text Streaming Clustering“. In 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI). IEEE, 2018. http://dx.doi.org/10.1109/wi.2018.0-108.
Der volle Inhalt der QuelleYin, Jianhua, und Jianyong Wang. „A dirichlet multinomial mixture model-based approach for short text clustering“. In KDD '14: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2623330.2623715.
Der volle Inhalt der QuelleKarlsson, Alexander, Denio Duarte, Gunnar Mathiason und Juhee Bae. „Evaluation of the Dirichlet Process Multinomial Mixture Model for Short-Text Topic Modeling“. In 2018 6th International Symposium on Computational and Business Intelligence (ISCBI). IEEE, 2018. http://dx.doi.org/10.1109/iscbi.2018.00025.
Der volle Inhalt der QuelleGuo, Zhiyan, und Wentao Fan. „Image Segmentation Based on Finite IBL Mixture Model with a Dirichlet Compound Multinomial Prior“. In AIPR 2020: 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3430199.3430207.
Der volle Inhalt der QuelleMazarura, Jocelyn, und Alta de Waal. „A comparison of the performance of latent Dirichlet allocation and the Dirichlet multinomial mixture model on short text“. In 2016 PRASA-RobMech International Conference. IEEE, 2016. http://dx.doi.org/10.1109/robomech.2016.7813155.
Der volle Inhalt der Quelle„Unsupervised Learning of a Finite Discrete Mixture Model Based on the Multinomial Dirichlet Distribution: Application to Texture Modeling“. In 4th International Workshop on Pattern Recognition in Information Systems. SciTePress - Science and and Technology Publications, 2004. http://dx.doi.org/10.5220/0002658601180127.
Der volle Inhalt der QuelleKanzawa, Yuchi. „Fuzzy co-clustering induced by q-multinomial mixture models“. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2017. http://dx.doi.org/10.1109/fuzz-ieee.2017.8015398.
Der volle Inhalt der Quelle