Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multigate transistor“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multigate transistor" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multigate transistor"
Lee, Chi-Woo, Aryan Afzalian, Nima Dehdashti Akhavan, Ran Yan, Isabelle Ferain und Jean-Pierre Colinge. „Junctionless multigate field-effect transistor“. Applied Physics Letters 94, Nr. 5 (02.02.2009): 053511. http://dx.doi.org/10.1063/1.3079411.
Der volle Inhalt der QuelleMartins, Rodrigo, Diana Gaspar, Manuel J. Mendes, Luis Pereira, Jorge Martins, Pydi Bahubalindruni, Pedro Barquinha und Elvira Fortunato. „Papertronics: Multigate paper transistor for multifunction applications“. Applied Materials Today 12 (September 2018): 402–14. http://dx.doi.org/10.1016/j.apmt.2018.07.002.
Der volle Inhalt der QuelleJayachandran, Remya, Dhanaraj Jagalchandran und Perinkolam Chidambaram Subramaniam. „Planar CMOS and multigate transistors based wide-band OTA buffer amplifiers for heavy resistance load“. Facta universitatis - series: Electronics and Energetics 35, Nr. 1 (2022): 13–28. http://dx.doi.org/10.2298/fuee2201013j.
Der volle Inhalt der QuelleSelvi, K. Kalai, K. S. Dhanalakshmi und Kalaivani Kanagarajan. „Performance Estimation of Recessed Modified Junctionless Multigate Transistor“. Journal of Nano- and Electronic Physics 14, Nr. 1 (2022): 01008–1. http://dx.doi.org/10.21272/jnep.14(1).01008.
Der volle Inhalt der QuelleKohda, S., K. Masuda, K. Matsuzawa und Y. Kitano. „A giant chip multigate transistor ROM circuit design“. IEEE Journal of Solid-State Circuits 21, Nr. 5 (Oktober 1986): 713–19. http://dx.doi.org/10.1109/jssc.1986.1052599.
Der volle Inhalt der QuelleDelgado-Notario, Juan A., Wojciech Knap, Vito Clericò, Juan Salvador-Sánchez, Jaime Calvo-Gallego, Takashi Taniguchi, Kenji Watanabe et al. „Enhanced terahertz detection of multigate graphene nanostructures“. Nanophotonics 11, Nr. 3 (03.01.2022): 519–29. http://dx.doi.org/10.1515/nanoph-2021-0573.
Der volle Inhalt der QuelleOno, Y., H. Inokawa und Y. Takahashi. „Binary adders of multigate single-electron transistors: specific design using pass-transistor logic“. IEEE Transactions on Nanotechnology 1, Nr. 2 (Juni 2002): 93–99. http://dx.doi.org/10.1109/tnano.2002.804743.
Der volle Inhalt der QuelleWahid, Syamsudin Nur. „SIMULASI KUANTUM TRANSISTOR EFEK MEDAN MULTI GERBANG (NWFET)“. Jurnal Qua Teknika 7, Nr. 1 (15.03.2017): 53–64. http://dx.doi.org/10.35457/quateknika.v7i1.218.
Der volle Inhalt der QuelleWahid, Syamsudin Nur. „SIMULASI KUANTUM TRANSISTOR EFEK MEDAN MULTI GERBANG (NWFET)“. JURNAL QUA TEKNIKA 7, Nr. 1 (15.03.2017): 53–64. http://dx.doi.org/10.30957/quateknika.v7i1.218.
Der volle Inhalt der QuelleCheng, Hui-Wen, und Yiming Li. „Comparative Study of Multigate and Multifin Metal–Oxide–Semiconductor Field-Effect Transistor“. Japanese Journal of Applied Physics 49, Nr. 4 (20.04.2010): 04DC09. http://dx.doi.org/10.1143/jjap.49.04dc09.
Der volle Inhalt der QuelleDissertationen zum Thema "Multigate transistor"
Gay, Roméric. „Développement de composants analogiques embarqués dans des microcontrôleurs destinés à l'Internet des Objets (loT)“. Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0218.
Der volle Inhalt der QuelleThe aim of this work is to improve the performance, cost and area of a microcontroller manufactured in a 40 nm CMOS embedded memory technology (eNVM), by developing new transistor architectures suitable for the IoT market. The context is first presented with a focus on the technological and economical limitations of the CMOS technology. In a second part, the eNVM manufacturing process as well as the architecture and operation mode of a new component called triple gate transistor are presented. Based on this new architecture which provides independent control gates, various multigate transistors are manufactured and their electrical behaviour is analysed. Reliability studies are then carried out, to assess the reliability of the gate’s oxides. The objective is to study the impact of an electrical stress applied to one transistor gate on the gates not subject to this same stress. Electrical characterizations and TCAD simulations are also conducted to improve the understanding. Finally, the structure of the triple gate transistor is modelled using a compact PSP transistor model. The aim is to evaluate the behaviour but also the electrical performance of this transistor at the circuit level
Chevillon, Nicolas. „Etude et modélisation compacte du transistor FinFET ultime“. Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00750928.
Der volle Inhalt der QuelleLu, Wenjie. „Antimonide-based III-V multigate transistors“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117833.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged student-submitted from PDF version of thesis.
Includes bibliographical references (pages 159-171).
As Si CMOS technology advances, alternative channel materials are under extensive investigation to replace or augment Si in future generations of nanoelectronics. III-V compound semiconductors, such as InGaAs and InGaSb are promising candidates as channel materials for MOSFETs as a result of their extraordinary transport properties. In the past few years, rapid growth in the research of InGaAs n-channel multi-gate MOSFETs has taken place. However, progress in the InGaSb p-channel device research has remained stagnant. In this thesis, InGaSb multi-gate transistor technology has been pioneered and the first InGaSb FinFET has been demonstrated. Critical technological challenges for realizing InGaSb FinFETs have been overcome. First, a dry etching technique of heterostructures containing antimonide-based compounds has been developed. Etched fins and vertical nanowires show smooth, vertical sidewalls, high aspect ratio, and compatibility with the InGaAs system.
Second, a novel antimonide-compatible digital etch technique has been developed which can improve fin sidewall quality and device performance. Lastly, ohmic contacts have been investigated to reduce the parasitic source-drain resistance. The developed contact system delivers a record low contact resistivity. With the integration of the newly developed technologies, InGaSb p-channel FinFETs are demonstrated for the first time. Three generations of InGaSb FinFETs are fabricated following an optimization path for device design and process technology. The most aggressively scaled InGaSb FinFETs, with a minimum fin width of 10 nm and channel height of 23 nm, have achieved a maximum transconductance per device footprint of 704 μS/μm, a record value for any existing antimonide-based p-channel FETs.
In addition, the fabricated FinFETs have been electrically characterized, and device properties such as scaling behavior, impact of channel strain, and OFF-state leakage current have been studied. The work in this thesis has pushed significantly the state-of-the-art of antimonide-based electronic device technology.
by Wenjie Lu.
Ph. D.
Chang, Kai-Hsiang, und 張凱翔. „The study of multigate Poly-Si Thin-Film Transistors“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/30168709489216678656.
Der volle Inhalt der Quelle逢甲大學
電子工程所
99
Polycrystalline silicon thin-film transistors (Poly-Si) are used widely in various field, such as active-matrix liquid crystal displays (AMLCDs), solar cell, active matrix organic light emitting diode (AMOLED) and flash memories because of their high mobility and driving current. In recent year, the device is promising candidate to be used in display system-on-panel (SOP) as memory and controller. Then the conventional poly – Si TFT is not enough in term of the speed and the current drive capability. To increase the speed and the current of the poly-Si TFT, a double gate structure was proposed to provide an effective way to enhance the current drive capability of poly- Si TFT. Due to the double gate provides an additional current path. However the double gate is an attractive approach, there has the high electric field near the drain junction. It causes the device a larger leakage current and aggravates the kink effect than the convention structure. Then the light doped drain (LDD) combines the double gate. It has a effective way to improve the high electric field of double gate. Then the LDD also can reduce the leakage and maintain the high on-current. But the structure needs two the process of the expensive CMP. In the past, the dual gate had reported. We know that the gate and the channel relationship. It has a good controlled to the channel and not confer the gate length. It this letter, we propose the dual gate length to effecting the device performance. We only need to change the gate mask. And my structure also effectively reduce the nonideal effect neat the drain junction. My structure requires an extra mask to increase the cost. Keyword: DCTFT, dual gate, nonideal effect.
Bücher zum Thema "Multigate transistor"
Sivasankaran, K., und Partha Sharathi Mallick. Multigate Transistors for High Frequency Applications. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0157-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Multigate transistor"
Sivasankaran, K., und Partha Sharathi Mallick. „Radio Frequency Transistor Stability and Design Challenges“. In Multigate Transistors for High Frequency Applications, 9–23. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0157-9_2.
Der volle Inhalt der QuelleSivasankaran, K., und Partha Sharathi Mallick. „Radio Frequency Stability Performance of Silicon Nanowire Transistor“. In Multigate Transistors for High Frequency Applications, 61–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0157-9_6.
Der volle Inhalt der QuelleSivasankaran, K., und Partha Sharathi Mallick. „Radio Frequency Stability Performance of SELBOX Inverted-T Junctionless FET“. In Multigate Transistors for High Frequency Applications, 71–91. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0157-9_7.
Der volle Inhalt der QuelleSivasankaran, K., und Partha Sharathi Mallick. „Radio Frequency Stability Performance of DG MOSFET“. In Multigate Transistors for High Frequency Applications, 25–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0157-9_3.
Der volle Inhalt der QuelleSivasankaran, K., und Partha Sharathi Mallick. „Radio Frequency Stability Performance of FinFET“. In Multigate Transistors for High Frequency Applications, 49–60. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0157-9_5.
Der volle Inhalt der QuelleSivasankaran, K., und Partha Sharathi Mallick. „Radio Frequency Stability Performance of Double-Gate Tunnel FET“. In Multigate Transistors for High Frequency Applications, 35–47. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0157-9_4.
Der volle Inhalt der QuelleSivasankaran, K., und Partha Sharathi Mallick. „Introduction“. In Multigate Transistors for High Frequency Applications, 1–8. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0157-9_1.
Der volle Inhalt der QuelleRathinam, Ramesh, Adhithan Pon und Arkaprava Bhattacharyya. „Phosphorene Multigate Field-Effect Transistors for High-Frequency Applications“. In Sub-Micron Semiconductor Devices, 335–54. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003126393-21.
Der volle Inhalt der QuelleMadhulika Sharma, Savitesh, und Avtar Singh. „FinFETs and their Applications“. In Nanoscale Field Effect Transistors: Emerging Applications, 47–67. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815165647123010006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multigate transistor"
Lou, Haijun, Binghua Li, Xinnan Lin, Jin He und Mansun Chan. „Investigations of fin vertical nonuniformity effects on junctionless multigate transistor“. In 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2012. http://dx.doi.org/10.1109/icsict.2012.6467617.
Der volle Inhalt der QuelleGang Wu, Li Cai, Qiang Kang, Sen Wang und Qin Li. „A 8-bit parity code generator based on multigate single electron transistor“. In 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2008. http://dx.doi.org/10.1109/nems.2008.4484314.
Der volle Inhalt der QuelleWu, Gang, und Li Cai. „Ternary multiplier of multigate single electron transistor: Design using 3-T gate“. In 2010 8th IEEE International Conference on Control and Automation (ICCA). IEEE, 2010. http://dx.doi.org/10.1109/icca.2010.5524397.
Der volle Inhalt der QuelleHe, Chenlin, Fei You, Yi Wang, Zehua Xiao, Yaojia Fan und Songbai He. „A 22-32.7 GHz Linearized LNA in 65-nm CMOS Using Multigate Transistor Technique“. In 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2023. http://dx.doi.org/10.1109/icmmt58241.2023.10276839.
Der volle Inhalt der QuelleSingh, Dipak Kumar, Priyanka Mondal und M. W. Akram. „Bulk multigate junctionless transistor (BMGJLT) with non-uniform doping profile: An attractive device for scaling“. In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0025667.
Der volle Inhalt der QuelleYoung, Chadwin D. „Assessing the reliability and performance impact on the three-dimensional structure of multigate field effect transistor (MugFET)“. In 2013 IEEE International Integrated Reliability Workshop (IIRW). IEEE, 2013. http://dx.doi.org/10.1109/iirw.2013.6804145.
Der volle Inhalt der QuelleDehdashti, Nima, Abhinav Kranti, Isabelle Ferain, Chi-Woo Lee, Ran Yan, Pedram Razavi, Ran Yu und Jean-Pierre Colinge. „Dissipative transport in Multigate silicon nanowire transistors“. In 2010 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2010). IEEE, 2010. http://dx.doi.org/10.1109/sispad.2010.5604559.
Der volle Inhalt der QuelleSnelgrove, Ashton, und Pierre-Emmanuel Gaillardon. „Programmable logic elements using multigate ambipolar transistors“. In 2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS). IEEE, 2022. http://dx.doi.org/10.1109/ddecs54261.2022.9770137.
Der volle Inhalt der QuelleRazavi, P., G. Fagas, I. Ferain, N. D. Akhavan, R. Yu und J. P. Colinge. „Performance investigation of short-channel junctionless multigate transistors“. In 2011 12th International Conference on Ultimate Integration on Silicon (ULIS 2011). IEEE, 2011. http://dx.doi.org/10.1109/ulis.2011.5758005.
Der volle Inhalt der QuelleColinge, J. P. „Multigate transistors: Pushing Moore's law to the limit“. In 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2014. http://dx.doi.org/10.1109/sispad.2014.6931626.
Der volle Inhalt der Quelle