Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Multifunctional Lube Oil Additives.

Zeitschriftenartikel zum Thema „Multifunctional Lube Oil Additives“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Multifunctional Lube Oil Additives" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Ghosh, Pranab, und Mainul Hoque. „Multifunctional lube oil additives based on maleic anhydride“. Petroleum Science and Technology 34, Nr. 21 (01.11.2016): 1761–67. http://dx.doi.org/10.1080/10916466.2016.1225089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mehbad, Noura El. „Developments of Multifunctional Additives for High Quality Lube Oil“. Journal of Power and Energy Engineering 01, Nr. 05 (2013): 84–89. http://dx.doi.org/10.4236/jpee.2013.15014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Upadhyay, M., K. Dey und P. Ghosh. „Biodegradable multifunctional additives for lube oil: Synthesis and characterization“. Petroleum Science and Technology 34, Nr. 14 (17.07.2016): 1255–62. http://dx.doi.org/10.1080/10916466.2016.1190755.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Abdel-Azim, A., A. M. Nasser, N. S. Ahmed und R. S. Kamal. „Multifunctional Lube Oil Additives Based on Octadecene-Maleic Anhydride Copolymer“. Petroleum Science and Technology 29, Nr. 1 (Januar 2011): 97–107. http://dx.doi.org/10.1080/10916460903069829.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ghosh, P., K. Dey, M. Upadhyay und T. Das. „Multifunctional biodegradable lube oil additives: Synthesis, characterization, and performance evaluation“. Petroleum Science and Technology 35, Nr. 1 (29.12.2016): 66–71. http://dx.doi.org/10.1080/10916466.2016.1248770.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nandi, Manishita, und Pranab Ghosh. „Evaluation and Synthesis of Environmentally Benign Multifunctional Additives for Lube Oil“. Asian Journal of Chemical Sciences 14, Nr. 1 (03.02.2024): 42–49. http://dx.doi.org/10.9734/ajocs/2024/v14i1284.

Der volle Inhalt der Quelle
Annotation:
Behenyl acrylate (BA) homo-polymer and its copolymers with citral were synthesized with varying percentage compositions (w/w) and subjected to thorough characterization through GPC (gel permeation chromatography) analysis and spectroscopic techniques (FT-IR, NMR). The polymers' capability was assessed through viscosity index improvers/viscosity modifiers (VII or VM), anti wear (AW) additives and pour point depressants (PPD) for base oils (lubricating oil). The action mechanism of the PPD properties was investigated through photomicrographic analysis. Additionally, the thermal stability of the polymers was measured using TGA or thermo gravimetric analysis. Biodegradability tests on copolymers were conducted using soil burial test (SBT) and the Disc Diffusion (DD) method. The copolymers exhibited exceptional PPD, VII, and AW performance when incorporated into lubricating oil.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ghosh, Pranab, und Moumita Das. „Synthesis, Characterization, and Performance Evaluation of Some Multifunctional Lube Oil Additives“. Journal of Chemical & Engineering Data 58, Nr. 3 (25.02.2013): 510–16. http://dx.doi.org/10.1021/je3008793.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dey, Koushik, und Pranab Ghosh. „Potential Eco‐Friendly Multifunctional Lube Oil Additives: Synthesis, Characterization and Performance Evaluation“. ChemistrySelect 6, Nr. 30 (13.08.2021): 7604–12. http://dx.doi.org/10.1002/slct.202101784.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Azim, A. A. A. Abdel, A. M. Nasser, N. S. Ahmed, A. F. El Kafrawy und R. S. Kamal. „Multifunctional Additives Viscosity Index Improvers, Pour Point Depressants and Dispersants for Lube Oil“. Petroleum Science and Technology 27, Nr. 1 (14.01.2009): 20–32. http://dx.doi.org/10.1080/10916460701434621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Upadhyay, Mahua, Sujit Talikdar und Pranab Ghosh. „β-Pinene – acrylate copolymer as a potential biodegradable multifunctional additives for lube oil“. Petroleum Science and Technology 35, Nr. 21 (02.11.2017): 2051–58. http://dx.doi.org/10.1080/10916466.2017.1380044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Roy, Dibakar, Sujan Paul, Sultana Yeasmin und Pranab Ghosh. „Synthesis of linseed oil based biodegradable homo and copolymers: role as multifunctional greener additives in lube oil“. Journal of Macromolecular Science, Part A 58, Nr. 1 (04.09.2020): 2–7. http://dx.doi.org/10.1080/10601325.2020.1812400.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Talukdar, Sujit, Mahua Upadhyay und Pranab Ghosh. „Synthesis and performance evaluation of vegetable oil polymer as a multifunctional lube oil additive“. Petroleum Science and Technology 36, Nr. 23 (25.10.2018): 1983–90. http://dx.doi.org/10.1080/10916466.2018.1525398.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Ghosh, P., K. Dey und M. Upadhyay. „Liquid Crystal Blended Polyacrylate as a Potential Multifunctional Additive for Lube Oil“. Petroleum Science and Technology 32, Nr. 17 (10.06.2014): 2049–58. http://dx.doi.org/10.1080/10916466.2012.749891.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Singh, Raj K., Aruna Kukrety, Arvind Kumar, Ajay Chouhan, Rakesh C. Saxena, Siddharth S. Ray und Suman L. Jain. „Synthesis, characterization, and performance evaluation of N,N -Dimethylacrylamide-alkyl acrylate copolymers as novel multifunctional additives for lube oil“. Advances in Polymer Technology 37, Nr. 6 (03.04.2017): 1695–702. http://dx.doi.org/10.1002/adv.21826.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Fufaev, A. A., und G. I. Shor. „Development of lube oil additives“. Chemistry and Technology of Fuels and Oils 29, Nr. 9 (September 1993): 437–41. http://dx.doi.org/10.1007/bf00723196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Abdullaev, N. G., G. R. Gasan-zade, A. G. Rzaeva und A. A. Makhmudov. „Production of multifunctional additives for lube oils“. Chemistry and Technology of Fuels and Oils 22, Nr. 4 (April 1986): 170–72. http://dx.doi.org/10.1007/bf00719225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Beresnev, V. V., E. A. Stepanov, O. A. Yunusov und A. A. Zaikina. „Sulfurized oligoisobutenes as lube oil additives“. Chemistry and Technology of Fuels and Oils 28, Nr. 12 (Dezember 1992): 689–91. http://dx.doi.org/10.1007/bf00729577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kuliev, A. B., A. G. Mamedov und M. M. Kurbanov. „Thiobenzoyl alkyl sulfides as lube oil additives“. Chemistry and Technology of Fuels and Oils 23, Nr. 9 (September 1987): 432–33. http://dx.doi.org/10.1007/bf00725108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Verkhunov, S. M., V. N. Nikolaev, V. M. Kopylov und A. F. Fedotov. „Oligomers with ketone groups as lube oil additives“. Chemistry and Technology of Fuels and Oils 28, Nr. 12 (Dezember 1992): 691–92. http://dx.doi.org/10.1007/bf00729578.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Kamal, Rasha S., Entsar E. Badr, Marwa R. Mishrif und Nour E. A. AbdEl-Sattar. „Oleic acid-based compounds as lube oil additives for engine oil“. Egyptian Journal of Petroleum 32, Nr. 1 (März 2023): 33–39. http://dx.doi.org/10.1016/j.ejpe.2023.01.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ghosh, P., und M. Das. „Biocompatible multifunctional lubricating oil additives“. Petroleum Science and Technology 34, Nr. 15 (02.08.2016): 1367–73. http://dx.doi.org/10.1080/10916466.2016.1202967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ahmed, N. S., A. M. Nassar, R. M. Nasser, M. E. Abdel Raouf und A. F. El-Kafrawy. „The Rheological Properties of Lube Oil With Terpolymeric Additives“. Petroleum Science and Technology 32, Nr. 17 (18.06.2014): 2115–22. http://dx.doi.org/10.1080/10916466.2011.590833.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Glavati, O. L., S. M. Kurilo, G. G. Kravchuk, Yu T. Gordash, V. V. Shilov, V. V. Tsukruk und O. A. Lokhonya. „Structure of micelles of overbased salicylate lube oil additives“. Chemistry and Technology of Fuels and Oils 25, Nr. 5 (Mai 1989): 273–75. http://dx.doi.org/10.1007/bf00719832.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Kuliev, A. B., T. Sh Gasanova, S. A. Mamedov und N. O. Akhadov. „N-substituted octanamides and thiooctanamides as lube oil additives“. Chemistry and Technology of Fuels and Oils 23, Nr. 10 (Oktober 1987): 481–82. http://dx.doi.org/10.1007/bf00724832.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

CZERWINSKI, Jan, Andreas MAYER und Adrian WICHSER. „Effects of fuel tracing on nanoparticles from a Diesel engine“. Combustion Engines 160, Nr. 1 (01.02.2015): 3–10. http://dx.doi.org/10.19206/ce-116896.

Der volle Inhalt der Quelle
Annotation:
Nanoparticles from a HD-Diesel engine and their composition were investigated in the present paper. Three variants of fuel additivities were applied to allow the balances of certain tracer-substances after the tests: 2% of additives-free lube oil; 2% of market lube oil with additive package and Fe-based regeneration additive (FBC) with 40 ppm Fe. The analysed SMPS particle size distributions indicated that by blending of the market lube oil to the fuel the combined effects of metals or metal oxides from the additive packages and of the heavy HC’s from the lube oil matrix contribute the most to the increase of nuclei mode. From the masses of Fe, Zn and Ca, which were introduced with the fuel, only parts were found as integral masses at all ELPI-stages – Fe 43.5%, Zn 36.6%, Ca 65.5%. The majority of mass of some metals, or metal oxides emissions on ELPI-stages (up to 80%) is in the size ranges below 100 nm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Singh, Raj K., Aruna Kukrety und Arun K. Singh. „Study of Novel Ecofriendly Multifunctional Lube Additives Based on Pentaerythritol Phenolic Ester“. ACS Sustainable Chemistry & Engineering 2, Nr. 8 (18.07.2014): 1959–67. http://dx.doi.org/10.1021/sc500389f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Zawadzki, David, Jeffrey D. Stieb und Stewart McGee. „CONSIDERATIONS FOR DISPERSANT USE: TANK VESSEL PUERTO RICAN INCIDENT1“. International Oil Spill Conference Proceedings 1987, Nr. 1 (01.04.1987): 341–45. http://dx.doi.org/10.7901/2169-3358-1987-1-341.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT The tank vessel Puerto Rican broke into two sections on November 3, 1984, following explosions and fires which had begun three days earlier. Approximately 30,000 barrels of lube oil and lube oil additives were released 32 miles west-southwest of the Golden Gate Bridge, San Francisco, California. After careful consideration of the possible effects on the environment of the application of dispersants, the U.S. Coast Guard On-Scene Coordinator requested and received authorization from the Regional Response Team to use Corexit 9527 for chemically dispersing the spilled oil. This was the first authorized use of dispersants on a major oil spill in the United States.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ahmed, Nehal S., Amal M. Nassar, Yasser K. Abd el menem und Reham I. El- shazly. „Preparation, characterization and evaluation of some metallic lube oil additives“. IOSR Journal of Applied Chemistry 7, Nr. 12 (2014): 56–67. http://dx.doi.org/10.9790/5736-071215667.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Buniyat-Zade, I. A., A. I. Akhmedov, D. Sh Gamidova, E. U. Isakov und U. F. Askerova. „Functionalized oligomers of lower α-olefins as lube oil additives“. Chemistry and Technology of Fuels and Oils 34, Nr. 5 (September 1998): 289–91. http://dx.doi.org/10.1007/bf02694079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zaichenko, L. P., T. M. Cherpalova, O. A. Nikiforov, E. G. Kochina, V. A. Proskuryakov und Yu A. Mikutenok. „Metered introduction of additives into diesel lube oil during operation“. Chemistry and Technology of Fuels and Oils 22, Nr. 7 (Juli 1986): 362–63. http://dx.doi.org/10.1007/bf00730527.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Nasser, Amal M., Nehal S. Ahmed und Rasha S. Kamal. „Preparation and Evaluation of Some Terpolymers as Lube Oil Additives“. Journal of Dispersion Science and Technology 32, Nr. 4 (23.03.2011): 616–21. http://dx.doi.org/10.1080/01932691003659692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Upadhyay, Mahua, Gobinda Karmakar, Gurpreet Singh Kapur und Pranab Ghosh. „Multifunctional greener additives for lubricating oil“. Polymer Engineering & Science 58, Nr. 5 (28.06.2017): 810–15. http://dx.doi.org/10.1002/pen.24635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hathal, Mustafa M., Hasan Sh Majdi, Issam K. Salih und Rusul A. Rasool. „Lube Oil Performance Enhancement Using Nano-Polymers Additives during Copolymerization Reaction“. Iraqi Journal of Industrial Research 10, Nr. 2 (20.10.2023): 27–40. http://dx.doi.org/10.53523/ijoirvol10i2id294.

Der volle Inhalt der Quelle
Annotation:
Under the parameters of normal engine operation, lubricating oil typically experience periodic shifts in its viscosity. Because of this, engine oils often include polymeric additives that are referred to as viscosity modifiers. The oil is able to give acceptable fluid lubrication at extreme temps due to these additives, which are oil-soluble polymers. The aim of present work to use polymers in form of nano-composites such as Styrene, Octadecyl-methacrylate (ODMC) and Dodecyle-methcrylate (DDMC) for lube oil viscosity index and pour point enhancement during copolymerization reaction. The benzoyl peroxide was used as an initiator. Solubilizes were made using SN-150 mineral base oil from the Al-Dorha refineries in Baghdad, which had a viscosity index of 128, and a viscosity range of 0 to 100°C. Styrene and methacrylate monomer combinations were copolymerized in an SN-150 mineral base oil solution in a nitrogen atmosphere at 60-80°C. A 200 mm3 oil glass reactor fitted with a magnetic stirrer and a reflux condenser was used to conduct the reactions. Five percent by weight of the total monomer was the concentration used. With respect to the monomers, the initiator concentration was 1.0% wt. Seven hours are needed for the whole reaction cycle. The copolymer composition was modified from 5 to 25% wt.% styrene by changing the monomer combination ratio. The advanced statistical analysis is performed to find the optimum conditions by mean of surface response and multiple regression using MINITAB. The optimization finding is obtained at Styrene of 5%, DDMC of 18% and ODMC of 18%, which promotes viscosity index of 197 leading to 51% enhancement in Al-Dora lube oil.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

John. Vitus Anaele, Ugochukwu Chidi Paulinus und Peter Odiboroghene Muwarure. „Comparative study of ultrasonic processor to blending kettle for production of lubricants“. Global Journal of Engineering and Technology Advances 16, Nr. 2 (30.08.2023): 240–55. http://dx.doi.org/10.30574/gjeta.2023.16.2.0164.

Der volle Inhalt der Quelle
Annotation:
Due to the high cost of energy needed in traditional (blending kettle) lube oil blending/manufacturing for viscosity change and the need for specialised lubricants in batches of 1 to 10 tons, it has been found to be beneficial to use ultrasound method for lube oil blending and dispersion of additives and viscosity change. This removes the need for heating, using insulated vessels/blending kettles, as well as high powered agitators, thereby giving huge energy savings and reducing dramatically the carbon footprint. 3,000 litres of lube oil can be manufactured in one hour using a 1.5kw tubular ultrasonic processor without heating, agitation or moving parts unlike the traditional blending method otherwise called blending kettle with the same capacity which manufactures 3,000 litres in 7.5 hours with enormous amount of energy and heat involved. Furthermore, using the ultrasonic method eliminates production delays arising from heating and cooling and mixing high quality products hence aids continuous operation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mohammed, Abubakar Kandi, Idris Ibrahim Ozigis und Nasir Muhammed Lawal. „Gas Turbine Bearing Temperature Monitoring via Regression Modelling“. ABUAD Journal of Engineering Research and Development (AJERD) 6, Nr. 1 (30.06.2023): 76–87. http://dx.doi.org/10.53982/ajerd.2023.0601.10-j.

Der volle Inhalt der Quelle
Annotation:
This paper focuses on using Regression technique (MLR) towards finding solution to incidence of high compressor bearing temperature on one of the units at Geregu power plant in Ajaokuta, Nigeria. Monitoring of parameters related to the bearing temperature was carried out to find out causes for the high bearing temperature fault and came up with successful diagnosis by interrelating the gasturbine current lube oil test results of parameters like the kinematic viscosities, % concentration of additives and flash point with reference and standard VG46 lube oil data published in literature. Using statistical tools like the Pearson correlation and co-variant metrics for the five-years, the viscosities at 100oC and 40oC were selected as the input of the MLR model based on their Pearson coefficients of (-98.08%) and (-99.68%) respectively relative to the compressor bearing temperature and the covariance strength of the two parameters independently. The MLR model for the bearing temperature prediction gave a root mean square error of 0.121 and coefficient of determination(R2) of 99.71%. The model predicts that by the 2nd quarter of 2025, the bearing temperature would have reached the alarm point(900C) from the current value of 850C and that by the 1st quarter of 2027, the bearing temperature would have reached the trip point (1200C). Conclusion reached is that a well formulated data driven model can reliably forecast bearing temperature and together with sensors aid in gasturbine condition monitoring. Likewise, it is concluded that shearing due to the consistent high temperature operation of the gasturbine lube oil is responsible for the depletion of the Zinc(-23.9%) and Magnesium(-26%) additives leading to the decay in the viscosity and consequent bearing temperature increment. Recommendation made is to either replenish oil with antiwear additives or completely replace the oil to minimize the bearing wear rate and thus the bearing temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Cousseau, Tiago, Edison Serbino, Edney Rejowski und Amilton Sinatora. „Influence of steadite on the tribological behavior of cylinder liners“. Industrial Lubrication and Tribology 71, Nr. 2 (11.03.2019): 324–32. http://dx.doi.org/10.1108/ilt-05-2018-0187.

Der volle Inhalt der Quelle
Annotation:
Purpose This paper aims to understand the effect of steadite in gray cast iron (GCI) cylinder liners performance (friction and wear) when lubricated with new lube oil formulations to verify if steadite can be reduced or suppressed from cylinder liners composition. Design/methodology/approach The paper presents an experimental approach to quantify the separated effect of lube additives and steadite content on GCI performance. Friction and wear of GCI samples with and without steadite were analyzed under lubricated conditions with a 5W30 lubricant and a base oil of similar viscosity under operating conditions similar to the ones observed at the top dead center of Otto engines. Scanning electron microscopy (SEM)-EDS analysis was used to evaluate wear and tribofilm formation. Findings The paper shows that steadite stabilizes friction coefficient and slightly reduces wear in the tests performed with base oil. However, its advantages are marginal in comparison to the ones provided by the fully formulated oil. Furthermore, SEM-EDS analyses of the wear track showed that steadite does not chemically react with zinc and sulfur compounds, reducing the tribofilm formation on the real area of contact and consequently changing the tribosystem behavior. Originality/value This paper covers an identified need to study the effect of lube additives and GCI composition using actual piston ring and cylinder liners under operating conditions similar to the ones observed at the top dead center of Otto engines.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ahmed, Nehal S., Amal M. Nassar und Abdel-Azim A. Abdel-Azim. „Synthesis and Evaluation of Some Detergent/Dispersant Additives for Lube Oil“. International Journal of Polymeric Materials 57, Nr. 2 (26.12.2007): 114–24. http://dx.doi.org/10.1080/00914030701392385.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Zakupra, V. A., Yu A. Mikhailov, P. L. Klimenko, L. M. Petrenko, N. L. Voloshin und M. A. Dmitruk. „Quality control of lube oil alkylsalicylate additives of the Detersol type“. Chemistry and Technology of Fuels and Oils 22, Nr. 6 (Juni 1986): 311–12. http://dx.doi.org/10.1007/bf00719564.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Shor, G. I., G. L. Trofimova, O. V. Ivanova und Ch Gulyev. „Rapid method for evaluation of thermal stability of lube oil additives“. Chemistry and Technology of Fuels and Oils 22, Nr. 10 (Oktober 1986): 555–57. http://dx.doi.org/10.1007/bf00727127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Ajekwene, Kingsley Kema, Johnson Oseghale Oboh, Ugonna Kingsley Ugo und Simon Ikechukwu Ichetaonye. „Preparation of Multifunctional Additive [MFA] from Castor Oil (CO) and Study of its Effects on the Physical Properties of Natural Rubber Vulcanizates“. International Journal of Research in Advent Technology 11, Nr. 3 (30.09.2023): 1–10. http://dx.doi.org/10.32622/ijrat.111202311.

Der volle Inhalt der Quelle
Annotation:
This experiment focuses on the synthesis of Multifunctional Additives (MFA) from Castor seed oil (CO) and pure Oleic acid (OA) respectively. These multifunctional additives (CO-MFA and OA-MFA) were investigated as potential substitutes for process oil, activator, co-activator, and accelerator in the formulation of a natural rubber vulcanizate. During processing, the castor seed oil was characterized for acid value (AV), free fatty acid (FFA) and saponification value (SV) and subsequently reacted with 1, 6-hexane diamine to obtain a mixture of salts termed castor oil-based multifunctional additives (CO-MFA), similarly, a pure oleic acid was also reacted with 1, 6-hexane diamine to obtain a pure salt termed oleic acid-based multifunctional additive (OA-MFA). These compounds were investigated as substitutes for process oil/stearic acid, process oil/stearic acid/zinc oxide, process oil/MBT, and process oil/stearic acid/zinc oxide/MBT in the formulation and compounding of natural rubber vulcanizate. The pre-mastication of the rubber and subsequent mixing with additives was carried out in a Banbury Internal Mixer at a rotor speed of 50 rpm for 7 mins while the vulcanization was achieved on a compression molding machine at a temperature of 140oC for 15 mins. The various vulcanizates samples were evaluated for tensile properties, compression set, abrasion resistance, and hardness. The use of castor seed oil-based multifunctional additives (CO-MFA) as a substitute for process oil/stearic acid/zinc oxide/MBT gave the highest value of tensile strength (12.24 MPa) as against the conventional rubber compound (4.21 MPa).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ahmed, Nehal Sabry. „Preparation and Evaluation of Some Lube Oil Additives Based on Polyethylene Glycol“. International Journal of Polymeric Materials 55, Nr. 10 (Oktober 2006): 761–71. http://dx.doi.org/10.1080/00914030500403391.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ghosh, P., M. Hoque und D. Nandi. „Homo- and Copolymers of Decyl Methacrylate as Performance Additives for Lube Oil“. Petroleum Science and Technology 33, Nr. 8 (18.04.2015): 920–27. http://dx.doi.org/10.1080/10916466.2015.1034364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ershov, M. A., V. D. Savelenko, N. S. Shvedova, D. V. Tokareva, D. A. Potanin, I. F. Khabibullin und I. V. Klokova. „Overview of modern multifunctional gasoline additives. Market, key components, and methods for evaluating their effectiveness“. World of Oil products the Oil Companies Bulletin 04, Nr. 1 (2021): 42–53. http://dx.doi.org/10.32758/2071-5951-2021-1-4-42-53.

Der volle Inhalt der Quelle
Annotation:
The article provides an analysis of scientific and technical publications (articles and patents) on the components of multifunctional additives for gasoline, their chemistry and development companies. According to the detergent component, for the first time, based on the analysis of these documents, an integral assessment of the effectiveness of active substances on various elements of the fuel system is given. The article summarizes the current requirements for the content of detergent additives in gasoline of the leading manufacturers, provides standards and currently used methods for evaluating the effectiveness of detergent components. The issues of the market of multifunctional additives are considered by summarizing the marketing statements of the leading Russian and world oil companies, which allows us to draw conclusions about the principal component composition of additives used in commercial branded gasoline. The cost and quantitative assessment of the market of multifunctional additives and branded gasoline is given. The relevance of the topic and this review is high because it given the almost complete absence of gasoline with domestic multifunctional additives on the Russian market. The review will be useful both for specialists involved in the development and testing of multifunctional additives and branded gasoline, and for employees of oil companies (regional sales departments) responsible for promoting new branded fuels to the market.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Malinowska, Małgorzata. „The Full or Partial Replacement of Commercial Marine Engine Oil with Bio Oil, on the Example of Linseed Oil“. Journal of KONES 26, Nr. 3 (01.09.2019): 129–35. http://dx.doi.org/10.2478/kones-2019-0066.

Der volle Inhalt der Quelle
Annotation:
Abstract The bio-oils are considered to sustainable, alternative and environmentally friendly source of lubricants compared to commercial engine oils, on the base a mineral, synthetic or semi-synthetic. They are obtained from natural raw material (vegetable or animal oils), which are renewable and non-toxic to humans, living organisms and environment. The vegetable oils called green oils, natural oils, bio-oils or natural esters. They can be obtained from plant seeds, that may be consumed – edible oils (for instance: rapeseed oil) or which cannot be consumed – inedible (for example: linseed oil). The conducted research into linseed oil and its different quantity additives (25% and 50%) to commercial marine mineral oil intended for a medium-speed 4-stroke, trunk marine engine (i.e. Marinol RG 1240). The flash point and dependence of viscosity and temperature were compared and assess. It has been proven that vegetable oils have a high ignition temperature and very small viscosity change in the range of temperatures presented, i.e. high viscosity index. According to the results, it can be recommended the addition of 25% linseed oil in the base lubricant is the relevant for lubricating a medium speed 4-stroke marine engine. The vegetable additives can improve a viscosity index a lube oil, and they will be positively affected environmental protection.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Fang, Jian Hua, Bo Shui Chen, Jiu Wang und Jiang Wu. „The Preparation and Tribological Behaviors of Boron-Nitrogen Containing Modified Soybean Oil as Additives for Lubricating Oil“. Advanced Materials Research 622-623 (Dezember 2012): 561–65. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.561.

Der volle Inhalt der Quelle
Annotation:
A type of new environmentally friendly lube additive----boron-nitrogen containing modified soybean oil was synthesized and characterized by infrared spectrum. Its tribological properties in rapeseed oil were tested on the four balls tester. The morphographies and tribochemical species of the worn surfaces were analyzed by means of Scanning Electron Microscope (SEM) and X--ray Photoelectron Spectroscope (XPS). The results show that the type of modified soybean oil as additives can obviously increase the load-carrying capacity 、anti-wear and friction-reducing abilities of rapeseed oil. Its lubrication mechanism is inferred that a high strength adsorption film and/or tribochemistry reaction film on the worn surface of the Al alloy due the carrier effect of a long chain rapeseed oil, high reaction activities of nitrogen, electron-deficient of boron and their synergisms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Naghiyeva, E. A., A. A. Gadirov, A. K. Kazim-zade, Kh N. Mammadyarova, R. A. Mammadova und S. I. Nasirova. „Multifunctional alkyl-phenolate additives to the motor oils“. Azerbaijan Oil Industry, Nr. 11 (15.11.2020): 51–54. http://dx.doi.org/10.37474/0365-8554/2020-11-51-54.

Der volle Inhalt der Quelle
Annotation:
The additives AKİ-26 and AKİ-26d - calcium salts of condensation products (С8-С12; С12) of alkylphenol, formaldehyde, piperidine and their carbonated versions of AKİ-126 have been obtained. The additives obtained have good functional properties. In anticorrosion and antixodizing properties AKİ-26 and AKİ-26d additives are superior to the analogues АСК and ИХП-101; AKİ-26 and AKİ-26d additives by anticorrosion properties surpass the foreign additives ВНИИНП-714 and МАСК. The comparison of synthesized additives justifies that AKİ-26d additive significantly overpasses AKİ-26 by its anticorrosion and antioxidizing properties. М-10Г2 motor oil corresponding to ГОСТ 8581-92 has been developed using AKİ-26d and industrial additives and by functional performence is as good as foreign analogue “Shell”.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Ren, Tianhui, Yong Wan, Qunji Xue und Hanqing Wang. „A study of alkylthiomethylbenzotriazoles as multifunctional lubricating oil additives“. Lubrication Science 7, Nr. 2 (Januar 1995): 163–69. http://dx.doi.org/10.1002/ls.3010070205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Naletova, A. V., D. V. Davydov und V. N. Bakunin. „Derivatives Based on 2,5-Dimercapto-1,3,4-Thiadiazole as Multifunctional Additives for Lubricating Oils“. Chemistry and Technology of Fuels and Oils 627, Nr. 5 (2021): 45–52. http://dx.doi.org/10.32935/0023-1169-2021-627-5-45-52.

Der volle Inhalt der Quelle
Annotation:
Additives’ research remains relevant to many oil companies for this day. The dynamically developing market of lubricants requires the search for promising products for their production and the preparation of new compositions. In the last decade the strategic context for domestic oil refining has been the development of its own additives, compositions and packages of additives. The article discusses the trend of the selection of promising products based on a compound, which is the basis for the synthesis of multifunctional additives.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Kamal, Rasha S., Entsar E. Badr, Ibrahim M. Nassar und Nour E. A. AbdEl-Sattar. „Preparation and evaluation of some eco-friendly olethio-amide derivatives as lube oil additives“. Egyptian Journal of Petroleum 31, Nr. 1 (März 2022): 1–7. http://dx.doi.org/10.1016/j.ejpe.2021.09.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Yeh, Feng-Min, Vikranth Volli, Bin Laiwang, Pei-Hsuan Tung und Chi-Min Shu. „Oxidative stability and thermal performance of ester based lube oil with lithium salt additives“. Applied Thermal Engineering 150 (März 2019): 1328–36. http://dx.doi.org/10.1016/j.applthermaleng.2019.01.061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie