Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multibody kinematic optimization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multibody kinematic optimization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multibody kinematic optimization"
Tarnita, Daniela, Ionut Daniel Geonea, Doina Pisla, Giuseppe Carbone, Bogdan Gherman, Nicoleta Tohanean, Paul Tucan, Cristian Abrudan und Danut Nicolae Tarnita. „Analysis of Dynamic Behavior of ParReEx Robot Used in Upper Limb Rehabilitation“. Applied Sciences 12, Nr. 15 (07.08.2022): 7907. http://dx.doi.org/10.3390/app12157907.
Der volle Inhalt der QuelleLefebvre, F., I. Rogowski, N. Long und Y. Blache. „Influence of marker weights optimization on scapular kinematics estimated with a multibody kinematic optimization“. Journal of Biomechanics 159 (Oktober 2023): 111795. http://dx.doi.org/10.1016/j.jbiomech.2023.111795.
Der volle Inhalt der QuelleDouadi, Lounis, Davide Spinello, Wail Gueaieb und Hassan Sarfraz. „Planar kinematics analysis of a snake-like robot“. Robotica 32, Nr. 5 (04.11.2013): 659–75. http://dx.doi.org/10.1017/s026357471300091x.
Der volle Inhalt der QuelleHall, Andrew, Thomas Uchida, Francis Loh, Chad Schmitke und John Mcphee. „Reduction of a Vehicle Multibody Dynamic Model Using Homotopy Optimization“. Archive of Mechanical Engineering 60, Nr. 1 (01.03.2013): 23–35. http://dx.doi.org/10.2478/meceng-2013-0002.
Der volle Inhalt der QuelleDelyová, Ingrid, Darina Hroncová, Peter Frankovský, Peter Sivák, Ján Kostka und Vojtech Neumann. „Application of direct and inverse kinematics and dynamics in motion planning of manipulator links“. International Journal of Applied Mechanics and Engineering 28, Nr. 3 (29.09.2023): 53–64. http://dx.doi.org/10.59441/ijame/169515.
Der volle Inhalt der QuelleBlache, Y., M. Degot, M. Begon, S. Duprey und I. Rogowski. „Does double calibration coupled with a closed loop multibody kinematic optimization improve scapular kinematic estimates?“ Computer Methods in Biomechanics and Biomedical Engineering 23, sup1 (19.10.2020): S35—S37. http://dx.doi.org/10.1080/10255842.2020.1811505.
Der volle Inhalt der QuelleManrique-Escobar, Camilo Andres, Carmine Maria Pappalardo und Domenico Guida. „A Multibody System Approach for the Systematic Development of a Closed-Chain Kinematic Model for Two-Wheeled Vehicles“. Machines 9, Nr. 11 (20.10.2021): 245. http://dx.doi.org/10.3390/machines9110245.
Der volle Inhalt der QuelleBlanco-Claraco, Jose-Luis, Antonio Leanza und Giulio Reina. „A general framework for modeling and dynamic simulation of multibody systems using factor graphs“. Nonlinear Dynamics 105, Nr. 3 (28.07.2021): 2031–53. http://dx.doi.org/10.1007/s11071-021-06731-6.
Der volle Inhalt der QuelleBlache, Y., M. Degot, S. Duprey, M. Begon und I. Rogowski. „Closed-loop multibody kinematic optimization coupled with double calibration improves scapular kinematic estimates in asymptomatic population“. Journal of Biomechanics 126 (September 2021): 110653. http://dx.doi.org/10.1016/j.jbiomech.2021.110653.
Der volle Inhalt der QuelleKaidash, Mykhailo, und Serhii Selevych. „Dynamics and kinematics of complex mechanical systems harnessing multibody dynamic program“. Bulletin of Electrical Engineering and Informatics 13, Nr. 6 (01.12.2024): 3928–37. http://dx.doi.org/10.11591/eei.v13i6.7721.
Der volle Inhalt der QuelleDissertationen zum Thema "Multibody kinematic optimization"
Lefebvre, Félix. „Analyse cinématique de l'épaule et du membre supérieur par capture de mouvement avec et sans marqueurs“. Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10264.
Der volle Inhalt der QuelleThe precise and quantified characterization of human movement is essential in many fields, particularly in clinic and sports, to enhance, preserve, or restore motor abilities. The complex anatomy of the shoulder gives it fine and large-range motion capability, at the cost of fragile stability, exposing it to significant risks of impairments that can compromise its mobility. To accurately estimate the kinematics of the shoulder complex, it is necessary to have a motion capture system that is fast, accurate, and suitable for routine use. Among the many tools employed, shoulder kinematic estimation via direct measurement is generally invasive or radiation-based, and in any case not suited for systematic evaluation. Indirect skin-based shoulder kinematic estimation methods, especially those using markers, are widely used but offer lower accuracy due to soft tissue artifacts. Numerous experimental and numerical strategies have been developed to improve their performance, though they have not yet fully satisfied expectations. Recently, markerless motion capture methods have emerged, but to date, none of them provide estimates compatible with the detailed kinematic modeling of the shoulder complex. The objective of this thesis was therefore to contribute to the development of shoulder kinematic analysis tools using both marker-based and markerless motion capture. A first sub-objective of this thesis was to study the influence of kinematic model optimization and scapular marker weight on scapular kinematics in a multibody kinematic optimization. The results of this first study highlighted that marker redundancy, meaning the use of more than three markers on the scapula, is recommended for scapular kinematic estimation in multibody kinematic optimization. These results also showed that the optimal marker weights are both participant- and movement-specific, but that an average weight set per movement could improve scapular kinematic estimation. The second sub-objective of this thesis was to develop a markerless motion capture method using a deep learning algorithm that allows for the kinematic tracking of the upper-limb, including the shoulder complex. This second study involved developing a 2D pose estimation algorithm capable of identifying 20 anatomical landmarks across five different movements with a median accuracy of less than 9 px. The markerless motion capture method developed based on this algorithm provided 3D estimates of the anatomical landmarks of the shoulder with an average accuracy of less than 15 mm, resulting in an articular kinematic accuracy of 14° for the scapulothoracic joint. These estimates were equivalent to, if not better than, those obtained using marker-based motion capture, with a significant time-saving due to the absence of preparation required. Further research is needed to transform this proof of concept into a fully functional motion capture tool and validate its potential to become the most suitable method for routine shoulder complex kinematic estimation
Zháňal, Lubor. „Simulace kinematiky a dynamiky vozidlových mechanismů“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234269.
Der volle Inhalt der Quelle„Geometrical and kinematic optimization of closed-loop multibody systems/Optimisation géométrique et cinématique de systèmes multicorps avec boucles cinématiques“. Université catholique de Louvain, 2007. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-11132007-114747/.
Der volle Inhalt der QuelleBuchteile zum Thema "Multibody kinematic optimization"
Kuenzer, U., und M. L. Husty. „Joint Trajectory Optimization Using All Solutions of Inverse Kinematics of General 6-R Robots“. In Multibody Mechatronic Systems, 423–32. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09858-6_40.
Der volle Inhalt der QuelleBen Abdallah, Mohamed Amine, Imed Khemili, Med Amine Laribi und Nizar Aifaoui. „Dynamic Synthesis of a Multibody System: A Comparative Study Between Genetic Algorithm and Particle Swarm Optimization Techniques“. In Computational Kinematics, 227–34. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60867-9_26.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multibody kinematic optimization"
Datoussaïd, Sélim, Olivier Verlinden und Calogéro Conti. „Optimal Design of Multibody Systems by Using Genetic Algorithms“. In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8682.
Der volle Inhalt der QuelleFumagalli, Alessandro, Gabriella Gaias und Pierangelo Masarati. „A Simple Approach to Kinematic Inversion of Redundant Mechanisms“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35285.
Der volle Inhalt der QuelleZhu, Yitao, Daniel Dopico, Corina Sandu und Adrian Sandu. „MBSVT: Software for Modeling, Sensitivity Analysis, and Optimization of Multibody Systems at Virginia Tech“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34084.
Der volle Inhalt der QuelleKim, Junggon, und Rudranarayan Mukherjee. „A QP-Based Approach to Kinematic Motion Planning of Multibody Systems“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-48096.
Der volle Inhalt der QuelleRyu, Jonathan, Andrew Ellis, R. K. Schmidt und Ilyong Kim. „Gradient Based Simultaneous Structural and Kinematic Optimization of Landing Gear Members based on the Modified Input-Output Equation for Multibody Kinematics“. In AIAA SCITECH 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-1672.
Der volle Inhalt der QuelleHensges, Michael. „Simulation and Optimization of an Adjustable Inlet Guide Vane for Industrial Turbo Compressors“. In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50242.
Der volle Inhalt der QuelleCallejo, Alfonso, Valentin Sonneville und Olivier A. Bauchau. „Sensitivity Analysis of Flexible Multibody Systems Based on the Motion Formalism and the Discrete Adjoint Method“. In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86211.
Der volle Inhalt der QuelleSimonidis, Christian, Gu¨nther Stelzner und Wolfgang Seemann. „A Kinematic Study of Human Torso Motion“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35257.
Der volle Inhalt der QuelleSancibrian, Ramon, Pablo Garcia, Fernando Viadero und Alfonso Fernandez. „Exact-Gradient Optimization Method for Rigid-Body Guidance Synthesis of Planar Mechanisms“. In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57051.
Der volle Inhalt der QuelleNasr, Ali, Spencer Ferguson und John McPhee. „Model-Based Design and Optimization of Passive Shoulder Exoskeletons“. In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-69437.
Der volle Inhalt der Quelle