Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multi-stain segmentation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multi-stain segmentation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multi-stain segmentation"
Hassan, Loay, Mohamed Abdel-Nasser, Adel Saleh, Osama A. Omer und Domenec Puig. „Efficient Stain-Aware Nuclei Segmentation Deep Learning Framework for Multi-Center Histopathological Images“. Electronics 10, Nr. 8 (16.04.2021): 954. http://dx.doi.org/10.3390/electronics10080954.
Der volle Inhalt der QuelleAbdel-Nasser, Mohamed, Vivek Kumar Singh und Ehab Mahmoud Mohamed. „Efficient Staining-Invariant Nuclei Segmentation Approach Using Self-Supervised Deep Contrastive Network“. Diagnostics 12, Nr. 12 (02.12.2022): 3024. http://dx.doi.org/10.3390/diagnostics12123024.
Der volle Inhalt der QuelleXu, Xiaoping, Meirong Ji, Bobin Chen und Guowei Lin. „Analysis on Characteristics of Dysplasia in 345 Patients with Myelodysplastic Syndrome“. Blood 112, Nr. 11 (16.11.2008): 5100. http://dx.doi.org/10.1182/blood.v112.11.5100.5100.
Der volle Inhalt der QuelleAlvarsson, Alexandra, Carl Storey, Brandy Olin Pope, Caleb Stoltzfus, Robert Vierkant, Jessica Tufariello, Aaron Bungum et al. „Abstract 6624: 3D assessment of the lung cancer microenvironment using multi-resolution open-top light-sheet microscopy“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 6624. http://dx.doi.org/10.1158/1538-7445.am2023-6624.
Der volle Inhalt der QuelleSchuerch, Christian, Graham L. Barlow, Salil S. Bhate, Nikolay Samusik, Garry P. Nolan und Yury Goltsev. „Dynamics of the Bone Marrow Microenvironment during Leukemic Progression Revealed By Codex Hyper-Parameter Tissue Imaging“. Blood 132, Supplement 1 (29.11.2018): 935. http://dx.doi.org/10.1182/blood-2018-99-111708.
Der volle Inhalt der QuelleWarr, Ryan, Stephan Handschuh, Martin Glösmann, Robert J. Cernik und Philip J. Withers. „Quantifying multiple stain distributions in bioimaging by hyperspectral X-ray tomography“. Scientific Reports 12, Nr. 1 (19.12.2022). http://dx.doi.org/10.1038/s41598-022-23592-0.
Der volle Inhalt der QuelleGour, Mahesh, Sweta Jain und T. Sunil Kumar. „Robust nuclei segmentation with encoder‐decoder network from the histopathological images“. International Journal of Imaging Systems and Technology 34, Nr. 4 (30.05.2024). http://dx.doi.org/10.1002/ima.23111.
Der volle Inhalt der QuelleHuang, Zhi, Wei Shao, Zhi Han, Ahmad Mahmoud Alkashash, Carlo De la Sancha, Anil V. Parwani, Hiroaki Nitta et al. „Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images“. npj Precision Oncology 7, Nr. 1 (27.01.2023). http://dx.doi.org/10.1038/s41698-023-00352-5.
Der volle Inhalt der QuelleCazzaniga, Giorgio, Mattia Rossi, Albino Eccher, Ilaria Girolami, Vincenzo L’Imperio, Hien Van Nguyen, Jan Ulrich Becker et al. „Time for a full digital approach in nephropathology: a systematic review of current artificial intelligence applications and future directions“. Journal of Nephrology, 28.09.2023. http://dx.doi.org/10.1007/s40620-023-01775-w.
Der volle Inhalt der QuelleWarr, Ryan, Evelina Ametova, Robert J. Cernik, Gemma Fardell, Stephan Handschuh, Jakob S. Jørgensen, Evangelos Papoutsellis, Edoardo Pasca und Philip J. Withers. „Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction“. Scientific Reports 11, Nr. 1 (21.10.2021). http://dx.doi.org/10.1038/s41598-021-00146-4.
Der volle Inhalt der QuelleDissertationen zum Thema "Multi-stain segmentation"
Nisar, Zeeshan. „Self-supervised learning in the presence of limited labelled data for digital histopathology“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD016.
Der volle Inhalt der QuelleA key challenge in applying deep learning to histopathology is the variation in stainings, both inter and intra-stain. Deep learning models trained on one stain (or domain) often fail on others, even for the same task (e.g., kidney glomeruli segmentation). Labelling each stain is expensive and time-consuming, prompting researchers to explore domain adaptation based stain-transfer methods. These aim to perform multi-stain segmentation using labels from only one stain but are limited by the introduction of domain shift, reducing performance. Detecting and quantifying this domain shift is important. This thesis focuses on unsupervised methods to develop a metric for detecting domain shift and proposes a novel stain-transfer approach to minimise it. While multi-stain algorithms reduce the need for labels in target stains, they may struggle with tissue types lacking source-stain labels. To address this, the thesis focuses to improve multi-stain segmentation with less reliance on labelled data using self-supervision. While this thesis focused on kidney glomeruli segmentation, the proposed methods are designed to be applicable to other histopathology tasks and domains, including medical imaging and computer vision
Buchteile zum Thema "Multi-stain segmentation"
Taixé, L. Leal, A. U. Coskun, B. Rosenhahn und D. H. Brooks. „Automatic Segmentation of Arteries in Multi-stain Histology Images“. In IFMBE Proceedings, 2000–2003. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03882-2_531.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multi-stain segmentation"
Wang, Ruochan, und Sei-ichiro Kamata. „Stain-Refinement and Boundary-Enhancement Weight Maps for Multi-organ Nuclei Segmentation“. In 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2020. http://dx.doi.org/10.1109/icievicivpr48672.2020.9306586.
Der volle Inhalt der QuelleWang, Ruochan, und Sei-ichiro Kamata. „Stain-Refinement and Boundary-Enhancement Weight Maps for Multi-organ Nuclei Segmentation“. In 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2020. http://dx.doi.org/10.1109/icievicivpr48672.2020.9306586.
Der volle Inhalt der QuelleGraham, S., und N. M. Rajpoot. „SAMS-NET: Stain-aware multi-scale network for instance-based nuclei segmentation in histology images“. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363645.
Der volle Inhalt der Quelle