Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multi-Scale finite element method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multi-Scale finite element method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multi-Scale finite element method"
Li, Cui Yu, und Xiao Tao Zhang. „Multi-Scale Finite Element Method and its Application“. Advanced Materials Research 146-147 (Oktober 2010): 1583–86. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.1583.
Der volle Inhalt der QuelleHiu, Haifeng, Changzhi Wang und Xiaoguang Hu. „Multi-scale Finite Element Method for Members for Pipe Frames“. IOP Conference Series: Earth and Environmental Science 446 (21.03.2020): 052045. http://dx.doi.org/10.1088/1755-1315/446/5/052045.
Der volle Inhalt der QuelleChen, Ning, Jiaojiao Chen, Jian Liu, Dejie Yu und Hui Yin. „A homogenization-based Chebyshev interval finite element method for periodical composite structural-acoustic systems with multi-scale interval parameters“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, Nr. 10 (12.12.2018): 3444–58. http://dx.doi.org/10.1177/0954406218819030.
Der volle Inhalt der QuelleXiang, Jia Wei, Zhan Si Jiang und Jin Yong Xu. „A Wavelet-Based Finite Element Method for Modal Analysis of Beams“. Advanced Materials Research 97-101 (März 2010): 2728–31. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.2728.
Der volle Inhalt der QuellePeng, Mengyao, Min Liu, Shuitao Gu und Shidong Nie. „Multiaxial Fatigue Analysis of Jacket-Type Offshore Wind Turbine Based on Multi-Scale Finite Element Model“. Materials 16, Nr. 12 (14.06.2023): 4383. http://dx.doi.org/10.3390/ma16124383.
Der volle Inhalt der QuelleKIM, HYOUNG SEOP. „MULTI-SCALE FINITE ELEMENT SIMULATION OF SEVERE PLASTIC DEFORMATION“. International Journal of Modern Physics B 23, Nr. 06n07 (20.03.2009): 1621–26. http://dx.doi.org/10.1142/s0217979209061366.
Der volle Inhalt der QuelleJia, Hongxing, Shizhu Tian, Shuangjiang Li, Weiyi Wu und Xinjiang Cai. „Seismic application of multi-scale finite element model for hybrid simulation“. International Journal of Structural Integrity 9, Nr. 4 (13.08.2018): 548–59. http://dx.doi.org/10.1108/ijsi-04-2017-0027.
Der volle Inhalt der QuelleBardi, Istvan, Kezhong Zhao, Rickard Petersson, John Silvestro und Nancy Lambert. „Multi-domain multi-scale problems in high frequency finite element methods“. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 32, Nr. 5 (09.09.2013): 1471–83. http://dx.doi.org/10.1108/compel-04-2013-0123.
Der volle Inhalt der QuelleGai, Wen Hai, R. Guo und Jun Guo. „Molecular Dynamics Approach and its Application in the Analysis of Multi-Scale“. Applied Mechanics and Materials 444-445 (Oktober 2013): 1364–69. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.1364.
Der volle Inhalt der QuelleHE, WEN-YU, und WEI-XIN REN. „ADAPTIVE TRIGONOMETRIC HERMITE WAVELET FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS“. International Journal of Structural Stability and Dynamics 13, Nr. 01 (Februar 2013): 1350007. http://dx.doi.org/10.1142/s0219455413500077.
Der volle Inhalt der QuelleDissertationen zum Thema "Multi-Scale finite element method"
Balazi, atchy nillama Loïc. „Multi-scale Finite Element Method for incompressible flows in heterogeneous media : Implementation and Convergence analysis“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX053.
Der volle Inhalt der QuelleThis thesis is concerned with the application of a Multi-scale Finite Element Method (MsFEM) to solve incompressible flow in multi-scale media. Indeed, simulating the flow in a multi-scale media with numerous obstacles, such as nuclear reactor cores, is a highly challenging endeavour. In order to accurately capture the finest scales of the flow, it is necessary to use a very fine mesh. However, this often leads to intractable simulations due to the lack of computational resources. To address this limitation, this thesis develops an enriched non-conforming MsFEM to solve viscous incompressible flows in heterogeneous media, based on the classical non-conforming Crouzeix--Raviart finite element method with high-order weighting functions. The MsFEM employs a coarse mesh on which new basis functions are defined. These functions are not the classical polynomial basis functions of finite elements, but rather solve fluid mechanics equations on the elements of the coarse mesh. These functions are themselves numerically approximated on a fine mesh, taking into account all the geometric details, which gives the multi-scale aspect of this method. A theoretical investigation of the proposed MsFEM is conducted at both the continuous and discrete levels. Firstly, the well-posedness of the discrete local problems involved in the MsFEM was demonstrated using new families of finite elements. To achieve this, a novel non-conforming finite element family in three dimensions on tetrahedra was developed. Furthermore, the first error estimate for the approximation of the Stokes problem in periodic perforated media using this MSFEM is derived, demonstrating its convergence. This is based on homogenization theory of the Stokes problem in periodic domains and on usual finite element theory. At the numerical level, the MsFEM to solve the Stokes and the Oseen problems in two and three dimensions is implemented in a massively parallel framework in FreeFEM. Furthermore, a methodology to solve the Navier–Stokes problem is provided
Adzima, M. Fauzan. „Constitutive modelling and finite element simulation of martensitic transformation using a computational multi-scale framework“. Thesis, Swansea University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678581.
Der volle Inhalt der QuelleHUI, YANCHUAN. „Multi-scale Modelling and Design of Composite Structures“. Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2739922.
Der volle Inhalt der QuelleBettinotti, Omar. „A weakly-intrusive multi-scale substitution method in explicit dynamics“. Thesis, Cachan, Ecole normale supérieure, 2014. http://www.theses.fr/2014DENS0032/document.
Der volle Inhalt der QuelleComposite laminates are increasingly employed in aeronautics, but can be prone to extensive delamination when submitted to impact loads. The need of performing virtual testing to predict delamination becomes essential for engineering workflows, in which the use of a fine modeling scheme appears nowadays to be the preferred one. The associated computational cost would be prohibitively high for large structures. The goal of this work consists in reducing such computational cost coupling the fine model, restricted to the surroundings of the delamination process zone, with a coarse one applied to the rest of the structure. Due to the transient behavior of impact problems, the dynamic adaptivity of the models to follow evolutive phenomena represents a crucial feature for the coupling. Many methodologies are currently used to couple multiple models, such as non-overlapping Domain Decomposition method, that, applied to dynamic adaptivity, has to be combined with a re-meshing strategy, considered as intrusive implementation within a Finite Element Analysis software. In this work, the bases of a weakly-intrusive approach, called Substitution method, are presented in the field of explicit dynamics. The method is based on a global-local formulation and is designed so that it is possible to make use of the pre-fixed coarse model the meshes the whole structure to obtain a global response: this pre-computation is then iteratively corrected considering the application of the refined model only where required, in the picture of an adaptive strategy. The verification of the Substitution method in comparison with the Domain Decomposition method is presented
Zhou, Zhiqiang. „Multiple-Scale Numerical Analysis of Composites Based on Augmented Finite Element Method“. Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/75.
Der volle Inhalt der QuelleDe, Mier Torrecilla Monica. „Numerical simulation of multi-fluid flows with the Particle Finite Element Method“. Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/6872.
Der volle Inhalt der QuelleEn este trabajo nos hemos centrado en entender la principios físicos básicos de los multi-fluidos y las dificultades que aparecen en su simulación numérica. Hemos extendido el Particle Finite Element Method (PFEM) a problemas de varios fluidos diferentes con el objetivo de explotar el hecho de que los métodos lagrangianos son especialmente adecuados para el seguimiento de todo tipo de interfases. Hemos desarrollado un esquema numérico capaz de tratar grandes saltos en las propiedades físicas (densidad y viscosidad), de incluir la tensión superficial y de representar las discontinuidades de las variables del flujo. El esquema se basa en desacoplar las variables de posición de los nodos, velocidad y presión a través de la linearización de Picard y un método de segregación de la presión que tiene en cuenta las condiciones de interfase. La interfase se ha definido alineada con la malla móvil, de forma que se mantiene el salto de propiedades físicas sin suavizar a lo largo del tiempo. Además, los grados de libertad de la presión han sido duplicados en los nodos de interfase para representar la discontinuidad de esta variable debido a la tensión superficial y a la viscosidad variable, y la malla ha sido refinada cerca de la interfase para mejorar la precisión de la simulación. Hemos aplicado el esquema resultante a diversos problemas académicos y geológicos, como el sloshingde dos fluidos, extrusión de fluidos viscosos, ascensión y rotura de una burbuja dentro de una columna de líquido, mezcla de magmas y fuentes invertidas (negatively buoyant jet).
The simultaneous presence of multiple fluids with different properties in external or internal flows is found in daily life, environmental problems, and numerous industrial processes, among many other practical situations. Examples arefluid-fuel interaction in enhanced oil recovery, blending of polymers, emulsions in food manufacturing, rain droplet formation in clouds, fuel injection in engines, and bubble column reactors, to name only a few. Although multi-fluid flows occur frequently in nature and engineering practice, they still pose a major research challenge from both theoretical and computational points of view. In the case of immiscible fluids, the dynamics of the interface between fluids plays a dominant role. The success of the simulation of such flows will depend on the ability of the numerical method to model accurately the interface and the phenomena taking place on it.
In this work we have focused on understanding the basic physical principles of multi-fluid flows and the difficulties that arise in their numerical simulation. We have extended the Particle Finite Element Method to problems involving several different fluids with the aim of exploiting the fact that Lagrangian methods are specially well suited for tracking any kind of interfaces. We have developed a numerical scheme able to deal with large jumps in the physical properties, included surface tension, and able to accurately represent all types of discontinuities in the flow variables at the interface. The scheme is based on decoupling the nodes position, velocity and pressure variables through the Picard linearization and a pressure segregation method which takes into account the interface conditions. Theinterface has been defined to be aligned with the moving mesh, so that it remains sharp along time. Furthermore, pressure degrees of freedom have been duplicated at the interface nodes to represent the discontinuity of this variable due to surface tension and variable viscosity, and the mesh has been refined in the vicinity of the interface to improve the accuracy of the computations. We have applied the resulting scheme to several academic and geological problems, such as the two-fluid sloshing, extrusion of viscous fluids, bubble rise and break up, mixing of magmatic liquids and negatively buoyant jets.
Zhao, Kezhong. „A domain decomposition method for solving electrically large electromagnetic problems“. Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1189694496.
Der volle Inhalt der QuelleKimn, Edward Sun. „A parametric finite element analysis study of a lab-scale electromagnetic launcher“. Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39498.
Der volle Inhalt der QuelleGuney, Murat Efe. „High-performance direct solution of finite element problems on multi-core processors“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34662.
Der volle Inhalt der QuelleSchiava, D'Albano Guillermo Gonzalo. „Computational and algorithmic solutions for large scale combined finite-discrete elements simulations“. Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9071.
Der volle Inhalt der QuelleBücher zum Thema "Multi-Scale finite element method"
Habashi, W. G. Large-scale computational fluid dynamics by the finite element method. New York: American Institute of Aeronautics and Astronautics, 1991.
Den vollen Inhalt der Quelle findenE, Tezduyar T., und United States. National Aeronautics and Space Administration., Hrsg. Finite element solution techniques for large-scale problems in computational fluid dynamics. [Washington, DC: National Aeronautics and Space Administration, 1987.
Den vollen Inhalt der Quelle findenL, Lin T., Povinelli Louis A und United States. National Aeronautics and Space Administration., Hrsg. Large-scale computation of incompressible viscous flow by least-squares finite element method. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenL, Lin T., Povinelli Louis A und United States. National Aeronautics and Space Administration., Hrsg. Large-scale computation of incompressible viscous flow by least-squares finite element method. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenL, Lin T., Povinelli Louis A und United States. National Aeronautics and Space Administration., Hrsg. Large-scale computation of incompressible viscous flow by least-squares finite element method. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenCenter, Langley Research, Hrsg. Analytic and computational perspectives of multi-scale theory for homogeneous, laminated composite, and sandwich beams and plates. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2012.
Den vollen Inhalt der Quelle findenA, Saravanos D., und NASA Glenn Research Center, Hrsg. A mixed multi-field finite element formulation for thermopiezoelectric composite shells. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Den vollen Inhalt der Quelle findenA, Saravanos D., und NASA Glenn Research Center, Hrsg. A mixed multi-field finite element formulation for thermopiezoelectric composite shells. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Den vollen Inhalt der Quelle findenShigemi, Masashi. Finite element analysis of incompressible viscous flows around single and multi-element aerofoils in high Reynolds number region. Tokyo: National Aerospace Laboratory, 1988.
Den vollen Inhalt der Quelle findenTan, Cher Ming. Applications of finite element methods for reliability studies on ULSI interconnections. London: Springer, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Multi-Scale finite element method"
van Eekelen, Tom. „Radiation Modeling Using the Finite Element Method“. In Solar Energy at Urban Scale, 237–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118562062.ch11.
Der volle Inhalt der QuelleAndreev, A. B., J. T. Maximov und M. R. Racheva. „Finite Element Method for Plates with Dynamic Loads“. In Large-Scale Scientific Computing, 445–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45346-6_47.
Der volle Inhalt der QuelleRoters, Franz. „The Texture Component Crystal Plasticity Finite Element Method“. In Continuum Scale Simulation of Engineering Materials, 561–72. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603786.ch28.
Der volle Inhalt der QuelleIliev, Oleg P., Raytcho D. Lazarov und Joerg Willems. „Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman’s Equations“. In Large-Scale Scientific Computing, 14–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12535-5_2.
Der volle Inhalt der QuelleHofreither, Clemens, Ulrich Langer und Clemens Pechstein. „A Non-standard Finite Element Method Based on Boundary Integral Operators“. In Large-Scale Scientific Computing, 28–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29843-1_3.
Der volle Inhalt der QuelleLazarov, Boyan S. „Topology Optimization Using Multiscale Finite Element Method for High-Contrast Media“. In Large-Scale Scientific Computing, 339–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43880-0_38.
Der volle Inhalt der QuelleMatonoha, Ctirad, Alexej Moskovka und Jan Valdman. „Minimization of p-Laplacian via the Finite Element Method in MATLAB“. In Large-Scale Scientific Computing, 533–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97549-4_61.
Der volle Inhalt der QuellePreußer, T., und M. Rumpf. „An Adaptive Finite Element Method for Large Scale Image Processing“. In Scale-Space Theories in Computer Vision, 223–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48236-9_20.
Der volle Inhalt der QuellePalha, Artur, und Marc Gerritsma. „Mimetic Least-Squares Spectral/hp Finite Element Method for the Poisson Equation“. In Large-Scale Scientific Computing, 662–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12535-5_79.
Der volle Inhalt der QuelleSteinbach, Olaf, und Huidong Yang. „An Algebraic Multigrid Method for an Adaptive Space–Time Finite Element Discretization“. In Large-Scale Scientific Computing, 66–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73441-5_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multi-Scale finite element method"
Li Zhang und Guizhen Lu. „Analysis of multi scale finite element method in low frequency“. In 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA). IEEE, 2014. http://dx.doi.org/10.1109/wartia.2014.6976414.
Der volle Inhalt der QuelleMa, Xinyu, Nana Duan, Weijie Xu und Shuhong Wang. „Multi-Scale Finite Element Method Applied in 3D Nonlinear Problem“. In 2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC). IEEE, 2024. http://dx.doi.org/10.1109/cefc61729.2024.10585808.
Der volle Inhalt der QuelleLIU, WING. „Multi-scale finite element methods for structural dynamics“. In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1057.
Der volle Inhalt der QuelleDongdong, Zeng, Li Yanfei und Lu Guizhen. „Study on multi-scale finite element method for EM wave equation“. In 2010 International Workshop on Electromagnetics; Applications and Student Innovation (iWEM). IEEE, 2010. http://dx.doi.org/10.1109/aem2c.2010.5578775.
Der volle Inhalt der QuelleThompson, M. K. „Finite Element Modeling of Multi-Scale Thermal Contact Resistance“. In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52385.
Der volle Inhalt der QuelleCui-Yu Li und Xiao-Tao Zhang. „Numerical simulation of knitted fabric material with multi-scale finite element method“. In 2009 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2009. http://dx.doi.org/10.1109/icmlc.2009.5212167.
Der volle Inhalt der QuelleManta, Asimina, Matthieu Gresil und Constantinos Soutis. „MULTI-SCALE FINITE ELEMENT ANALYSIS OF GRAPHENE/POLYMER NANOCOMPOSITES ELECTRICAL PERFORMANCE“. In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.1936.7586.
Der volle Inhalt der QuelleCui-Yu Li und Xiao-Tao Zhang. „Numerical simulation of woven fabric material based on multi-scale finite element method“. In 2008 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2008. http://dx.doi.org/10.1109/icmlc.2008.4620793.
Der volle Inhalt der QuelleTam, Nguyen Ngoc. „Multi-scale Sheet Metal Forming Analyses by using Dynamic Explicit Homogenized Finite Element Method“. In NUMISHEET 2005: Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process. AIP, 2005. http://dx.doi.org/10.1063/1.2011255.
Der volle Inhalt der QuelleYu, Qing, und Jer-Fang Wu. „Multi-Scale Finite Element Simulation of Progressive Damage in Composite Structures“. In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92064.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Multi-Scale finite element method"
Shenoy, V. B., R. Miller, E. B. Tadmor, D. Rodney und R. Phillips. An Adaptive Finite Element Approach to Atomic-Scale Mechanics: The Quasicontinuum Method. Fort Belvoir, VA: Defense Technical Information Center, November 1998. http://dx.doi.org/10.21236/ada358720.
Der volle Inhalt der QuelleZhu, Minjie, und Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2024. http://dx.doi.org/10.55461/gsfh8371.
Der volle Inhalt der QuellePask, J., N. Sukumar, M. Guney und W. Hu. Partition-of-unity finite-element method for large scale quantum molecular dynamics on massively parallel computational platforms. Office of Scientific and Technical Information (OSTI), Februar 2011. http://dx.doi.org/10.2172/1021061.
Der volle Inhalt der QuelleZhang, Xingyu, Matteo Ciantia, Jonathan Knappett und Anthony Leung. Micromechanical study of potential scale effects in small-scale modelling of sinker tree roots. University of Dundee, Dezember 2021. http://dx.doi.org/10.20933/100001235.
Der volle Inhalt der QuelleTerzic, Vesna, und William Pasco. Novel Method for Probabilistic Evaluation of the Post-Earthquake Functionality of a Bridge. Mineta Transportation Institute, April 2021. http://dx.doi.org/10.31979/mti.2021.1916.
Der volle Inhalt der QuelleGuan, Jiajing, Sophia Bragdon und Jay Clausen. Predicting soil moisture content using Physics-Informed Neural Networks (PINNs). Engineer Research and Development Center (U.S.), August 2024. http://dx.doi.org/10.21079/11681/48794.
Der volle Inhalt der QuelleTurner, Andrew. Effect of Coupling on A-Walls for Slope Stabilization. Deep Foundations Institute, Juni 2018. http://dx.doi.org/10.37308/cpf-2015-land-1.
Der volle Inhalt der QuelleZhu, Xian-Kui, und Bruce Wiersma. PR-644-213803-R01 Fatigue Life Models for Pipeline Containing Dents and Gouges. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2022. http://dx.doi.org/10.55274/r0012248.
Der volle Inhalt der QuelleBao, Jieyi, Xiaoqiang Hu, Cheng Peng, Junyi Duan, Yizhou Lin, Chengcheng Tao, Yi Jiang und Shuo Li. Advancing INDOT’s Friction Test Program for Seamless Coverage of System: Pavement Markings, Typical Aggregates, Color Surface Treatment, and Horizontal Curves. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317734.
Der volle Inhalt der QuelleChauhan und Wood. L52007 Experimental Validation of Methods for Assessing Closely Spaced Corrosion Defects. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2005. http://dx.doi.org/10.55274/r0011167.
Der volle Inhalt der Quelle