Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multi-qubit quantum gates“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multi-qubit quantum gates" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multi-qubit quantum gates"
Baßler, Pascal, Markus Heinrich und Martin Kliesch. „Time-optimal multi-qubit gates: Complexity, efficient heuristic and gate-time bounds“. Quantum 8 (13.03.2024): 1279. http://dx.doi.org/10.22331/q-2024-03-13-1279.
Der volle Inhalt der QuelleHEYDARI, HOSHANG. „GENERALIZED CONTROLLED PHASE QUANTUM GATES ENTANGLERS“. International Journal of Quantum Information 07, Nr. 06 (September 2009): 1211–16. http://dx.doi.org/10.1142/s021974990900581x.
Der volle Inhalt der QuelleAtiya, Abdulkader H., und Mohammed Al-Temimi. „Review of Recent Laser Technology of Development Multi Qubit Gates Using Ion Trap Method“. Applied Mechanics and Materials 915 (18.08.2023): 33–42. http://dx.doi.org/10.4028/p-j6vsf9.
Der volle Inhalt der QuelleSun, Shiya, und Huisheng Zhang. „Deterministic quantum cyclic controlled teleportation of arbitrary multi-qubit states using multi-qubit partially entangled channel“. Modern Physics Letters A 35, Nr. 25 (30.06.2020): 2050204. http://dx.doi.org/10.1142/s0217732320502041.
Der volle Inhalt der QuelleGao, Xiaoqin, Paul Appel, Nicolai Friis, Martin Ringbauer und Marcus Huber. „On the role of entanglement in qudit-based circuit compression“. Quantum 7 (16.10.2023): 1141. http://dx.doi.org/10.22331/q-2023-10-16-1141.
Der volle Inhalt der QuelleBaßler, Pascal, Matthias Zipper, Christopher Cedzich, Markus Heinrich, Patrick H. Huber, Michael Johanning und Martin Kliesch. „Synthesis of and compilation with time-optimal multi-qubit gates“. Quantum 7 (20.04.2023): 984. http://dx.doi.org/10.22331/q-2023-04-20-984.
Der volle Inhalt der QuelleStas, P. J., Y. Q. Huan, B. Machielse, E. N. Knall, A. Suleymanzade, B. Pingault, M. Sutula et al. „Robust multi-qubit quantum network node with integrated error detection“. Science 378, Nr. 6619 (04.11.2022): 557–60. http://dx.doi.org/10.1126/science.add9771.
Der volle Inhalt der QuelleLitinski, Daniel, und Felix von Oppen. „Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes“. Quantum 2 (04.05.2018): 62. http://dx.doi.org/10.22331/q-2018-05-04-62.
Der volle Inhalt der QuelleUrías, Jesús, und Diego A. Quiñones. „Householder methods for quantum circuit design“. Canadian Journal of Physics 94, Nr. 2 (Februar 2016): 150–57. http://dx.doi.org/10.1139/cjp-2015-0490.
Der volle Inhalt der QuelleUfrecht, Christian, Maniraman Periyasamy, Sebastian Rietsch, Daniel D. Scherer, Axel Plinge und Christopher Mutschler. „Cutting multi-control quantum gates with ZX calculus“. Quantum 7 (23.10.2023): 1147. http://dx.doi.org/10.22331/q-2023-10-23-1147.
Der volle Inhalt der QuelleDissertationen zum Thema "Multi-qubit quantum gates"
Sriarunothai, Theeraphot [Verfasser]. „Multi-qubit gates and quantum-enhanced deliberation for machine learning using a trapped-ion quantum processor / Theeraphot Sriarunothai“. Siegen : Universitätsbibliothek der Universität Siegen, 2019. http://d-nb.info/1177366320/34.
Der volle Inhalt der QuelleNavickas, Tomas. „Towards high-fidelity microwave driven multi-qubit gates on microfabricated surface ion traps“. Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/79060/.
Der volle Inhalt der QuelleSrivastava, Vineesha. „Entanglement generation and quantum gates with quantum emitters in a cavity“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF069.
Der volle Inhalt der QuelleThis thesis presents novel protocols for non-local multi-qubit quantum gates and entanglement generation in systems where multiple quantum emitters interact with a shared bosonic mode. It introduces the Geometric and Adiabatic Phase Gates, with closed-form infidelity expressions scaling with qubit number and cooperativity. For two qubits, these form a universal gate set, while in multi-qubit systems, they enable deterministic gates for quantum simulation and quantum error correction. A key contribution is an entanglement-enhanced sensing protocol that achieves high measurement precision via optimal control. The thesis also examines a cavity polariton blockade mechanism for non-local W-state generation and multi-qubit gates. These deterministic multi-qubit operations rely only on classical cavity drives and, in some cases, global qubit pulses, providing a scalable foundation for quantum computing, sensing, and the future quantum internet, especially for neutral atom systems
Vourdas, Apostolos. „Exterior calculus and fermionic quantum computation“. 2018. http://hdl.handle.net/10454/16618.
Der volle Inhalt der QuelleExterior calculus with its three operations meet, join and hodge star complement, is used for the representation of fermion-hole systems and for fermionic analogues of logical gates. Two different schemes that implement fermionic quantum computation, are proposed. The first scheme compares fermionic gates with Boolean gates, and leads to novel electronic devices that simulate fermionic gates. The second scheme uses a well known map between fermionic and multi-qubit systems, to simulate fermionic gates within multi-qubit systems.
Buchteile zum Thema "Multi-qubit quantum gates"
Flarend, Alice, und Bob Hilborn. „Quantum Circuits and Multi-Qubit Applications“. In Quantum Computing: From Alice to Bob, 135–58. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192857972.003.0010.
Der volle Inhalt der QuelleSengupta, Amlan, und Debotosh Bhattacharjee. „Quantum Program“. In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 180–207. IGI Global, 2024. http://dx.doi.org/10.4018/978-1-7998-9522-0.ch006.
Der volle Inhalt der QuelleFlarend, Alice, und Bob Hilborn. „Quantum Computing Algorithms“. In Quantum Computing: From Alice to Bob, 159–81. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192857972.003.0011.
Der volle Inhalt der QuelleNedunchezhian, Poornima, und Rajkumar Rajasekaran. „Introduction and Beginners Guide to Quantum Computing“. In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 1–10. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9183-3.ch001.
Der volle Inhalt der QuelleWereszczyński, Kamil, und Krzysztof Cyran. „Two-Rail Photonic Qubit Utilizing the Quantum Holographic Imaging Idea“. In Holography - Recent Advances and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106889.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multi-qubit quantum gates"
S, Venugopal, und Kunwar Singh. „New Multi-Qubit CHSH Games and their application to Device-Independent Quantum Key Distribution protocols“. In 2025 17th International Conference on COMmunication Systems and NETworks (COMSNETS), 1085–90. IEEE, 2025. https://doi.org/10.1109/comsnets63942.2025.10885575.
Der volle Inhalt der QuelleRen, J., und X. Zhang. „Multi-qubit quantum phase gates based on plasmonic nanospheres“. In 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2016. http://dx.doi.org/10.1109/metamaterials.2016.7746379.
Der volle Inhalt der QuelleHOFMANN, HOLGER F., RYO OKAMOTO und SHIGEKI TAKEUCHI. „LOCALLY OBSERVABLE CONDITIONS FOR THE SUCCESSFUL IMPLEMENTATION OF ENTANGLING MULTI-QUBIT QUANTUM GATES“. In Proceedings of the 8th International Symposium. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773210_0016.
Der volle Inhalt der QuelleDaraeizadeh, Sahar, Shavindra P. Premaratne und A. Y. Matsuura. „Designing high-fidelity multi-qubit gates for semiconductor quantum dots through deep reinforcement learning“. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2020. http://dx.doi.org/10.1109/qce49297.2020.00014.
Der volle Inhalt der QuelleToth, Peter, Lasse Cordes und Vadim Issakov. „A 13 GHz PA with Amplitude Modulation for Entanglement Generation in Multi-Qubit 171Yb+ Gates of an Ion-Trapped Quantum Computer“. In 2022 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). IEEE, 2022. http://dx.doi.org/10.1109/bcicts53451.2022.10051697.
Der volle Inhalt der QuelleOstrove, Corey, Stefan Seritan, Kenneth Rudinger, Matthew Grace, Erik Nielsen, Robin Blume-Kohout und Kevin Young. „Resource-efficient experiment designs for multi-qubit gate set tomography.“ In Proposed for presentation at the Southwest Quantum Information and Technology Workshop 2022 held October 20-22, 2022 in Berkeley, California United States. US DOE, 2022. http://dx.doi.org/10.2172/2005704.
Der volle Inhalt der QuelleJumayev, Bayram Ashyrmyradovich. „Modelling and testing multi-qubit universal control gate developed for quantum computing systems“. In CompSysTech '22: International Conference on Computer Systems and Technologies 2022. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3546118.3546139.
Der volle Inhalt der Quelle