Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multi-photon polymerization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multi-photon polymerization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multi-photon polymerization"
Huang, Ying, Yusheng Zhang, Yuming Su, Zhenghao Zhai, Jiawei Chen und Cheng Wang. „Two-photon induced polymerization in a porous polymer film to create multi-layer structures“. Chemical Communications 57, Nr. 37 (2021): 4516–19. http://dx.doi.org/10.1039/d1cc01383a.
Der volle Inhalt der QuelleLin, Jieqiong, Peng Liu, Xian Jing, Mingming Lu, Kaixuan Wang und Jie Sun. „Stochastic Multi-Molecular Modeling Method of Organic-Modified Ceramics in Two-Photon Induced Photopolymerization“. Materials 12, Nr. 23 (24.11.2019): 3876. http://dx.doi.org/10.3390/ma12233876.
Der volle Inhalt der QuelleVerbitsky, Lior, Nir Waiskopf, Shlomo Magdassi und Uri Banin. „A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization“. Nanoscale 11, Nr. 23 (2019): 11209–16. http://dx.doi.org/10.1039/c9nr03086g.
Der volle Inhalt der QuelleGlöckler, Felix, Florian Hausladen, Igor Alekseenko, Alexander Gröger, Giancarlo Pedrini und Daniel Claus. „Two-photon-polymerization enabled and enhanced multi-channel fibre switch“. Engineering Research Express 3, Nr. 4 (11.11.2021): 045016. http://dx.doi.org/10.1088/2631-8695/ac34c5.
Der volle Inhalt der QuellePisanello, Marco, Di Zheng, Antonio Balena, Filippo Pisano, Massimo De Vittorio und Ferruccio Pisanello. „An open source three-mirror laser scanning holographic two-photon lithography system“. PLOS ONE 17, Nr. 4 (15.04.2022): e0265678. http://dx.doi.org/10.1371/journal.pone.0265678.
Der volle Inhalt der QuelleFilippidis, G., J. Catherine, M. Farsari, V. Zorba und C. Fotakis. „Construction of micron three-dimensional structures employing multi-photon polymerization“. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 219, Nr. 4 (Dezember 2005): 165–68. http://dx.doi.org/10.1243/17403499jnn48.
Der volle Inhalt der QuelleZhao, Yuxia, Xue Li, Feipeng Wu und Xiangyun Fang. „Novel multi-branched two-photon polymerization initiators of ketocoumarin derivatives“. Journal of Photochemistry and Photobiology A: Chemistry 177, Nr. 1 (Januar 2006): 12–16. http://dx.doi.org/10.1016/j.jphotochem.2005.05.006.
Der volle Inhalt der QuelleCui, Hai-Bo, Yan Li, Zhao-Pei Liu, Hong Yang und Qi-Huang Gong. „Controlling aspect ratios of suspended nanorods fabricated by multi-photon polymerization“. Applied Physics A 105, Nr. 4 (19.08.2011): 897–901. http://dx.doi.org/10.1007/s00339-011-6539-1.
Der volle Inhalt der QuelleLee, W., S. A. Pruzinsky und P. V. Braun. „Multi-Photon Polymerization of Waveguide Structures Within Three-Dimensional Photonic Crystals“. Advanced Materials 14, Nr. 4 (19.02.2002): 271–74. http://dx.doi.org/10.1002/1521-4095(20020219)14:4<271::aid-adma271>3.0.co;2-y.
Der volle Inhalt der QuelleParkatzidis, Kostas, Maria Chatzinikolaidou, Eleftherios Koufakis, Maria Kaliva, Maria Farsari und Maria Vamvakaki. „Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity“. Polymer Chemistry 11, Nr. 25 (2020): 4078–83. http://dx.doi.org/10.1039/d0py00281j.
Der volle Inhalt der QuelleDissertationen zum Thema "Multi-photon polymerization"
Müller, Jonathan Benedikt [Verfasser], und M. [Akademischer Betreuer] Wegener. „Exploring the Mechanisms of Three-Dimensional Direct Laser Writing by Multi-Photon Polymerization / Jonathan Benedikt Müller. Betreuer: M. Wegener“. Karlsruhe : KIT-Bibliothek, 2015. http://d-nb.info/1072464608/34.
Der volle Inhalt der QuelleOgor, Florie. „Microfabrication 3D par polymérisation multiphotonique massivement parallélisée pour des applications photoniques et biomédicales“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0413.
Der volle Inhalt der QuelleSubmicron 3D structures are required in many fields (photonics, optics, biology, etc.). Fabricating such structures is difficult. Multiphoton polymerization is a suitable technique, but current fabrication times are long (one day to fabricate a mm3 structure), making industrial production costly and limiting the development of these structures. We present our contribution to the development and optimization of a massively parallelised multiphoton polymerization fabrication process for these structures. Two parallelization techniques are investigated at IMT Atlantique: one using a diffractive optical element and another, studied in this thesis, using a spatial light modulator in an imaging configuration and an ultra-sensitive TTA resist (Triplet-Triplet Annihilation), enabling writing with 1920 × 1080 beams in parallel. The use of multiple write beams can lead to resolution limiting proximity effects. We present our numerical simulation model of the photochemical process to understand, predict and correct these effects. We present possible improvements based on these simulations and the improved understanding of the optical system. The fabrication method we have developed enables us to fabricate structures with a resolution of around one micrometer in X,Y and several tens of micrometers in height on surfaces of the order of cm2 in just a few minutes. Finally, examples of applications in biology and ophthalmology, adapted to the photoplotter performance are presented
Liang, Wen Ping, und 梁文評. „Fabrication of two- and three-dimensional photonic crystals with defect by combining multiple-exposure of two-beam interference and multi-photon polymerization“. Thesis, 2005. http://ndltd.ncl.edu.tw/handle/39234243665121255414.
Der volle Inhalt der Quelle國立中正大學
光機電整合工程研究所
93
We demonstrated theoretically and experimentally a simple and easy method using multi-exposure of two-beam interference technique for fabrication of large-area two- and three-dimensional photonic crystals. Multi-exposure of two-beam interference pattern of a He-Cd laser or an argon laser into a negative SU8 or a positive AZ photopolymerizable photoresist is used to pattern square, rectangular, and hexagonal two- and three-dimensional periodic structures. The type of periodic structures depends on the orientation of photoresist with respect to the laser beam and the number of exposure. The lattice constants of three-dimensional periodic structures obtained by this technique are close in three dimensions, which is difficult to be obtained by one-exposure of multi-beam interference. In particular, we proposed a new ideal to fabricate two- and three-dimensional photonic crystals with well-defined defects by using the combination of interference and multi-photon polymerization techniques. Desired defects are introduced in the photonic crystals (fabricated by multi-exposure of two-beam interference technique) by tightly focused 100 femto-second duration pulses at 830nm-wavelength through an objective lens (numerical aperture = 0.85) to generate multi-photon absorption effect. A 6mm ´ 6mm photonic crystal with the lattice constant as small as 650nm embedding several kinds of defects, such as bending waveguides, numbers or letters defects, is obtained by employing this combination technique. Our new fabrication technique using multi-exposure of two-beam interference and its combination with multi-photon polymerization should be useful for mass production of photonic crystals and optoelectronics devices.
Konferenzberichte zum Thema "Multi-photon polymerization"
Tkaczyk, Tomasz S., Jiawei Lu und Haimu Cao. „Imaging Snapshot Spectrometers enabled with 2-Photon Polymerization based Additive Manufacturing“. In Imaging Systems and Applications, IM1G.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.im1g.7.
Der volle Inhalt der QuelleShahriar, Shaimum, Javier J. Pazos, Robin Howell, Tyrone Morales, Desiree Aguilar, Stephen M. Kuebler und Jimmy Touma. „Morpho Butterfly-Inspired Sensors Created by Multi-Photon Polymerization“. In 2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID). IEEE, 2022. http://dx.doi.org/10.1109/rapid54472.2022.9911536.
Der volle Inhalt der QuelleGregory, Serge L. H. F., und Elijah Kannatey-Asibu. „Analysis of Voxel Size During Two-Photon Polymerization“. In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7374.
Der volle Inhalt der QuelleObata, Kotaro, Jürgen Koch und Boris N. Chichkov. „Individually controlled multi-focus laser processing for two-photon polymerization“. In SPIE LASE, herausgegeben von Hiroyuki Niino, Michel Meunier, Bo Gu und Guido Hennig. SPIE, 2010. http://dx.doi.org/10.1117/12.842117.
Der volle Inhalt der QuelleSomers, Paul, Xiaolong He und Xianfan Xu. „Numerical modeling of multi-photon polymerization by ultrafast laser (Conference Presentation)“. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIII, herausgegeben von Beat Neuenschwander, Gediminas Račiukaitis, Tetsuya Makimura und Costas P. Grigoropoulos. SPIE, 2018. http://dx.doi.org/10.1117/12.2290612.
Der volle Inhalt der QuelleObata, Kotaro, Sven Passinger, Andreas Ostendorf und Boris Chichkov. „Multi-focus system for two-photon polymerization using phase modulated holographic technique“. In ICALEO® 2007: 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061168.
Der volle Inhalt der QuelleZhang, Qianyi, Antoine Boniface, Virendra Kumar Parashar und Christophe Moser. „Multi-Photon Polymerization with Upconversion Nanoparticles for Adaptive Feature-Size 3D Printing“. In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10232766.
Der volle Inhalt der QuelleTsunemitsu, Kaneto, Ryo Sano, Akira Watanabe, Hiroaki Onoe und Mitsuhiro Terakawa. „Microfabrication of double-network hydrogel with enhanced mechanical properties by multi-photon polymerization“. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVI, herausgegeben von Carlos Molpeceres, Aiko Narazaki und Jie Qiao. SPIE, 2021. http://dx.doi.org/10.1117/12.2576707.
Der volle Inhalt der QuelleKurth, Daniel, und Alexander Verl. „Kinematic multi-axis two-photon polymerization printer concept for the manufacturing of micro optics“. In 3D Printing for Lighting, herausgegeben von Nadarajah Narendran, Samuel T. Mills und Govi Rao. SPIE, 2023. http://dx.doi.org/10.1117/12.2675889.
Der volle Inhalt der QuelleObata, Kotaro, Francesc Caballero Lucas und Koji Sugioka. „Multi-photon polymerization by GHz burst mode femtosecond laser pulses for improvement of process resolution“. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVII, herausgegeben von Laura Gemini, Aiko Narazaki und Jie Qiao. SPIE, 2022. http://dx.doi.org/10.1117/12.2610529.
Der volle Inhalt der Quelle