Auswahl der wissenschaftlichen Literatur zum Thema „Multi-photon polymerization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multi-photon polymerization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Multi-photon polymerization"

1

Huang, Ying, Yusheng Zhang, Yuming Su, Zhenghao Zhai, Jiawei Chen und Cheng Wang. „Two-photon induced polymerization in a porous polymer film to create multi-layer structures“. Chemical Communications 57, Nr. 37 (2021): 4516–19. http://dx.doi.org/10.1039/d1cc01383a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lin, Jieqiong, Peng Liu, Xian Jing, Mingming Lu, Kaixuan Wang und Jie Sun. „Stochastic Multi-Molecular Modeling Method of Organic-Modified Ceramics in Two-Photon Induced Photopolymerization“. Materials 12, Nr. 23 (24.11.2019): 3876. http://dx.doi.org/10.3390/ma12233876.

Der volle Inhalt der Quelle
Annotation:
Organic-modified ceramics (Ormocer) are an outstanding class of hybrid materials due to the fact of their various excellent properties, and they have been successfully used in two-photon polymerization microfabrication fields. A series of functional devices has been fabricated and widely used in aerospace, information science, biomedicine, and other fields. However, quantization of intermolecular energy during the fabrication process is still a difficult problem. A stochastic multi-molecular modeling method is proposed in this paper. The detailed molecular-interaction energies during the photon polymerization of Ormocer were obtained by molecular dynamics analysis. The established molecular model was verified by comparing the simulated shrinkage results with commercial calibrated ones. This work is expected to provide a reference for optimizing the fabrication of organically modified ceramics and reducing photoresist shrinkage in two-photon polymerization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Verbitsky, Lior, Nir Waiskopf, Shlomo Magdassi und Uri Banin. „A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization“. Nanoscale 11, Nr. 23 (2019): 11209–16. http://dx.doi.org/10.1039/c9nr03086g.

Der volle Inhalt der Quelle
Annotation:
Semiconductor nanocrystals are shown as highly efficient quantum photoinitiators for solvent-and-additive-free polymerization with micromolar loading, surpassing traditional organic initiators. The new quantum photoinitiators demonstrate a two-photon polymerization capacity, allowing multi-functional microprinting.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Glöckler, Felix, Florian Hausladen, Igor Alekseenko, Alexander Gröger, Giancarlo Pedrini und Daniel Claus. „Two-photon-polymerization enabled and enhanced multi-channel fibre switch“. Engineering Research Express 3, Nr. 4 (11.11.2021): 045016. http://dx.doi.org/10.1088/2631-8695/ac34c5.

Der volle Inhalt der Quelle
Annotation:
Abstract This article discusses the fabrication and performance of a multi-channel fibre switch, consisting of 19 single-mode fibres, with enhanced coupling efficiency due to micro-optics, directly printed via two-photon-polymerization on the end-face of each fibre. The use of high-resolution two-photon-polymerization not only allows the enhancement of the coupling efficiency with respect to the coupling device in use but likewise offers great freedom in the arrangement of the used fibres. This letter gives a thorough explanation of the fabrication method as well as the optical simulations for the lenses on the fibre assembly.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pisanello, Marco, Di Zheng, Antonio Balena, Filippo Pisano, Massimo De Vittorio und Ferruccio Pisanello. „An open source three-mirror laser scanning holographic two-photon lithography system“. PLOS ONE 17, Nr. 4 (15.04.2022): e0265678. http://dx.doi.org/10.1371/journal.pone.0265678.

Der volle Inhalt der Quelle
Annotation:
Two-photon polymerization is a widely adopted technique for direct fabrication of 3D and 2D structures with sub-diffraction-limit features. Here we present an open-hardware, open-software custom design for a holographic multibeam two-photon polymerization system based on a phase-only spatial light modulator and a three-mirror scanhead. The use of three reflective surfaces, two of which scanning the phase-modulated image along the same axis, allows to overcome the loss of virtual conjugation within the large galvanometric mirrors pair needed to accommodate the holographic projection. This extends the writing field of view among which the hologram can be employed for multi-beam two-photon polymerization by a factor of ~2 on one axis (i.e. from ~200μm to ~400μm), with a voxel size of ~250nm × ~1050nm (lateral × axial size), and writing speed of three simultaneous beams of 2000 voxels/s, making our system a powerful and reliable tool for advanced micro and nano-fabrications on large area.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Filippidis, G., J. Catherine, M. Farsari, V. Zorba und C. Fotakis. „Construction of micron three-dimensional structures employing multi-photon polymerization“. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 219, Nr. 4 (Dezember 2005): 165–68. http://dx.doi.org/10.1243/17403499jnn48.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhao, Yuxia, Xue Li, Feipeng Wu und Xiangyun Fang. „Novel multi-branched two-photon polymerization initiators of ketocoumarin derivatives“. Journal of Photochemistry and Photobiology A: Chemistry 177, Nr. 1 (Januar 2006): 12–16. http://dx.doi.org/10.1016/j.jphotochem.2005.05.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cui, Hai-Bo, Yan Li, Zhao-Pei Liu, Hong Yang und Qi-Huang Gong. „Controlling aspect ratios of suspended nanorods fabricated by multi-photon polymerization“. Applied Physics A 105, Nr. 4 (19.08.2011): 897–901. http://dx.doi.org/10.1007/s00339-011-6539-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lee, W., S. A. Pruzinsky und P. V. Braun. „Multi-Photon Polymerization of Waveguide Structures Within Three-Dimensional Photonic Crystals“. Advanced Materials 14, Nr. 4 (19.02.2002): 271–74. http://dx.doi.org/10.1002/1521-4095(20020219)14:4<271::aid-adma271>3.0.co;2-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Parkatzidis, Kostas, Maria Chatzinikolaidou, Eleftherios Koufakis, Maria Kaliva, Maria Farsari und Maria Vamvakaki. „Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity“. Polymer Chemistry 11, Nr. 25 (2020): 4078–83. http://dx.doi.org/10.1039/d0py00281j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Multi-photon polymerization"

1

Müller, Jonathan Benedikt [Verfasser], und M. [Akademischer Betreuer] Wegener. „Exploring the Mechanisms of Three-Dimensional Direct Laser Writing by Multi-Photon Polymerization / Jonathan Benedikt Müller. Betreuer: M. Wegener“. Karlsruhe : KIT-Bibliothek, 2015. http://d-nb.info/1072464608/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ogor, Florie. „Microfabrication 3D par polymérisation multiphotonique massivement parallélisée pour des applications photoniques et biomédicales“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0413.

Der volle Inhalt der Quelle
Annotation:
Les structures de taille submicroniques en 3D sont utiles dans de nombreux domaines (photonique,optique, biologie...). La fabrication de telles structures est difficile. La polymérisation multiphotonique est une technique adaptée, mais les temps de fabrication actuels sont longs (une journée pour fabriquer une structure d’un mm3), rendant la production industrielle couteuse et limitant le développement de ces structures. Nous présentons notre contribution au développement et à l’optimisation d’un procédé de fabrication rapide de ces structures par polymérisation multiphotonique massivement parallélisée. Deux techniques de parallélisation sont étudiées à IMT Atlantique : une avec un élément optique diffractif, et l’autre, plus étudiée dans cette thèse, avec un modulateur spatial de lumière en configuration imagerie et une résine ultrasensible TTA (annihilation triplet-triplet), permettant d’écrire avec 1920×1080 faisceaux en parallèle. L’utilisation de multiples faisceaux d’écriture peut entraîner des effets de proximité qui limitent la résolution. Nous présentons notre simulation numérique du processus photochimique pour comprendre, prédire et corriger ces effets. Ensuite, nous présentons des améliorations effectuées, identifiées grâce aux simulations et à une meilleure compréhension du système optique. La méthode de fabrication développée permet de fabriquer des structures avec une résolution d’environ un micromètre en X,Y et de plusieurs dizaines de micromètres de hauteur sur des surfaces de l’ordre du cm2 en quelques minutes. Enfin, des exemples d’applications en biologie et en ophtalmologie, adaptés à ces performances, sont présentés
Submicron 3D structures are required in many fields (photonics, optics, biology, etc.). Fabricating such structures is difficult. Multiphoton polymerization is a suitable technique, but current fabrication times are long (one day to fabricate a mm3 structure), making industrial production costly and limiting the development of these structures. We present our contribution to the development and optimization of a massively parallelised multiphoton polymerization fabrication process for these structures. Two parallelization techniques are investigated at IMT Atlantique: one using a diffractive optical element and another, studied in this thesis, using a spatial light modulator in an imaging configuration and an ultra-sensitive TTA resist (Triplet-Triplet Annihilation), enabling writing with 1920 × 1080 beams in parallel. The use of multiple write beams can lead to resolution limiting proximity effects. We present our numerical simulation model of the photochemical process to understand, predict and correct these effects. We present possible improvements based on these simulations and the improved understanding of the optical system. The fabrication method we have developed enables us to fabricate structures with a resolution of around one micrometer in X,Y and several tens of micrometers in height on surfaces of the order of cm2 in just a few minutes. Finally, examples of applications in biology and ophthalmology, adapted to the photoplotter performance are presented
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Liang, Wen Ping, und 梁文評. „Fabrication of two- and three-dimensional photonic crystals with defect by combining multiple-exposure of two-beam interference and multi-photon polymerization“. Thesis, 2005. http://ndltd.ncl.edu.tw/handle/39234243665121255414.

Der volle Inhalt der Quelle
Annotation:
碩士
國立中正大學
光機電整合工程研究所
93
We demonstrated theoretically and experimentally a simple and easy method using multi-exposure of two-beam interference technique for fabrication of large-area two- and three-dimensional photonic crystals. Multi-exposure of two-beam interference pattern of a He-Cd laser or an argon laser into a negative SU8 or a positive AZ photopolymerizable photoresist is used to pattern square, rectangular, and hexagonal two- and three-dimensional periodic structures. The type of periodic structures depends on the orientation of photoresist with respect to the laser beam and the number of exposure. The lattice constants of three-dimensional periodic structures obtained by this technique are close in three dimensions, which is difficult to be obtained by one-exposure of multi-beam interference. In particular, we proposed a new ideal to fabricate two- and three-dimensional photonic crystals with well-defined defects by using the combination of interference and multi-photon polymerization techniques. Desired defects are introduced in the photonic crystals (fabricated by multi-exposure of two-beam interference technique) by tightly focused 100 femto-second duration pulses at 830nm-wavelength through an objective lens (numerical aperture = 0.85) to generate multi-photon absorption effect. A 6mm ´ 6mm photonic crystal with the lattice constant as small as 650nm embedding several kinds of defects, such as bending waveguides, numbers or letters defects, is obtained by employing this combination technique. Our new fabrication technique using multi-exposure of two-beam interference and its combination with multi-photon polymerization should be useful for mass production of photonic crystals and optoelectronics devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Multi-photon polymerization"

1

Tkaczyk, Tomasz S., Jiawei Lu und Haimu Cao. „Imaging Snapshot Spectrometers enabled with 2-Photon Polymerization based Additive Manufacturing“. In Imaging Systems and Applications, IM1G.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.im1g.7.

Der volle Inhalt der Quelle
Annotation:
The work presents examples of two imaging spectrometers enabled with 2-Photon Polymerization 3D printing. The presented spectrometers are field integral devices and image reorganization is achieved with high density waveguide array (waveguide spectrometer) or multifaceted, multi-angle mirror array respectively (Image Mapping Spectrometer - IMS). Fabricated components allow void spaces between image points dedicated for spectral information. High precision and repeatability of the fabricated components simplifies system calibration, improved image quality allows and more compact systems implementations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shahriar, Shaimum, Javier J. Pazos, Robin Howell, Tyrone Morales, Desiree Aguilar, Stephen M. Kuebler und Jimmy Touma. „Morpho Butterfly-Inspired Sensors Created by Multi-Photon Polymerization“. In 2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID). IEEE, 2022. http://dx.doi.org/10.1109/rapid54472.2022.9911536.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gregory, Serge L. H. F., und Elijah Kannatey-Asibu. „Analysis of Voxel Size During Two-Photon Polymerization“. In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7374.

Der volle Inhalt der Quelle
Annotation:
Two-photon polymerization combines the concepts of multi-photon absorption with polymerization of a free radical polymerizable monomer. It can be used to fabricate a variety of micro-devices including micro-fluidic, biomedical, micro-optical, and micro-mechanical devices. A critical aspect of two-photon polymerization is the resolution of the process. This paper derives an expression for the voxel (volume element) size produced during two-photon polymerization. The model assumes a Gaussian beam and the effects of beam power, lens parameters, and resin polymerization threshold are investigated. A sensitivity analysis is also performed, and the results show that the voxel formed is more sensitive to changes in beam power and resin threshold than to changes in the incident beam diameter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Obata, Kotaro, Jürgen Koch und Boris N. Chichkov. „Individually controlled multi-focus laser processing for two-photon polymerization“. In SPIE LASE, herausgegeben von Hiroyuki Niino, Michel Meunier, Bo Gu und Guido Hennig. SPIE, 2010. http://dx.doi.org/10.1117/12.842117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Somers, Paul, Xiaolong He und Xianfan Xu. „Numerical modeling of multi-photon polymerization by ultrafast laser (Conference Presentation)“. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIII, herausgegeben von Beat Neuenschwander, Gediminas Račiukaitis, Tetsuya Makimura und Costas P. Grigoropoulos. SPIE, 2018. http://dx.doi.org/10.1117/12.2290612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Obata, Kotaro, Sven Passinger, Andreas Ostendorf und Boris Chichkov. „Multi-focus system for two-photon polymerization using phase modulated holographic technique“. In ICALEO® 2007: 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhang, Qianyi, Antoine Boniface, Virendra Kumar Parashar und Christophe Moser. „Multi-Photon Polymerization with Upconversion Nanoparticles for Adaptive Feature-Size 3D Printing“. In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10232766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tsunemitsu, Kaneto, Ryo Sano, Akira Watanabe, Hiroaki Onoe und Mitsuhiro Terakawa. „Microfabrication of double-network hydrogel with enhanced mechanical properties by multi-photon polymerization“. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVI, herausgegeben von Carlos Molpeceres, Aiko Narazaki und Jie Qiao. SPIE, 2021. http://dx.doi.org/10.1117/12.2576707.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kurth, Daniel, und Alexander Verl. „Kinematic multi-axis two-photon polymerization printer concept for the manufacturing of micro optics“. In 3D Printing for Lighting, herausgegeben von Nadarajah Narendran, Samuel T. Mills und Govi Rao. SPIE, 2023. http://dx.doi.org/10.1117/12.2675889.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Obata, Kotaro, Francesc Caballero Lucas und Koji Sugioka. „Multi-photon polymerization by GHz burst mode femtosecond laser pulses for improvement of process resolution“. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVII, herausgegeben von Laura Gemini, Aiko Narazaki und Jie Qiao. SPIE, 2022. http://dx.doi.org/10.1117/12.2610529.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie