Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multi-objective Design“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multi-objective Design" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multi-objective Design"
Min, Xinyuan, Jaap Sok, Feije de Zwart und Alfons Oude Lansink. „Multi-stakeholder multi-objective greenhouse design optimization“. Agricultural Systems 215 (März 2024): 103855. http://dx.doi.org/10.1016/j.agsy.2024.103855.
Der volle Inhalt der QuelleFreier, Lars, und Eric von Lieres. „Robust multi-objective process design“. New Biotechnology 33 (Juli 2016): S27. http://dx.doi.org/10.1016/j.nbt.2016.06.822.
Der volle Inhalt der QuelleSun, Qi, Tinghuan Chen, Siting Liu, Jianli Chen, Hao Yu und Bei Yu. „Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design“. ACM Transactions on Design Automation of Electronic Systems 27, Nr. 4 (31.07.2022): 1–27. http://dx.doi.org/10.1145/3503540.
Der volle Inhalt der QuelleYAMASHINA, Hajime, Susumu OKUMURA und Yoshimasa KONDO. „Parameter Design with Multi Objective Characteristics.“ Journal of the Japan Society for Precision Engineering 58, Nr. 3 (1992): 516–20. http://dx.doi.org/10.2493/jjspe.58.516.
Der volle Inhalt der QuelleKor, Jean, Xiang Chen, Zhizhong Sun und Henry Hu. „Casting Design Through Multi-Objective Optimization“. IFAC Proceedings Volumes 44, Nr. 1 (Januar 2011): 11642–47. http://dx.doi.org/10.3182/20110828-6-it-1002.01726.
Der volle Inhalt der QuelleJoseph, Shaine, Hyung W. Kang und Uday K. Chakraborty. „Lens design as multi-objective optimisation“. International Journal of Automation and Control 5, Nr. 3 (2011): 189. http://dx.doi.org/10.1504/ijaac.2011.042851.
Der volle Inhalt der QuelleSanchis, J., M. Martinez und X. Blasco. „Multi-objective engineering design using preferences“. Engineering Optimization 40, Nr. 3 (März 2008): 253–69. http://dx.doi.org/10.1080/03052150701693057.
Der volle Inhalt der QuelleEckert, Jony Javorski, Fabio Mazzariol Santiciolli, Ludmila C. A. Silva und Franco Giuseppe Dedini. „Vehicle drivetrain design multi-objective optimization“. Mechanism and Machine Theory 156 (Februar 2021): 104123. http://dx.doi.org/10.1016/j.mechmachtheory.2020.104123.
Der volle Inhalt der QuellePelinescu, Diana M., und Michael Yu Wang. „Multi-objective optimal fixture layout design“. Robotics and Computer-Integrated Manufacturing 18, Nr. 5-6 (Oktober 2002): 365–72. http://dx.doi.org/10.1016/s0736-5845(02)00027-3.
Der volle Inhalt der QuelleLim, Dudy, Yew-Soon Ong, Yaochu Jin, Bernhard Sendhoff und Bu Sung Lee. „Inverse multi-objective robust evolutionary design“. Genetic Programming and Evolvable Machines 7, Nr. 4 (16.09.2006): 383–404. http://dx.doi.org/10.1007/s10710-006-9013-7.
Der volle Inhalt der QuelleDissertationen zum Thema "Multi-objective Design"
Kipouros, Timoleon. „Multi-objective aerodynamic design optimisation“. Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614261.
Der volle Inhalt der QuelleNezhadali, Vaheed. „Multi-objective optimization of Industrial robots“. Thesis, Linköpings universitet, Maskinkonstruktion, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-113283.
Der volle Inhalt der QuelleLiu, Wei. „A multi-objective approach for RMT design“. Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27149.
Der volle Inhalt der QuelleLi, Yinjiang. „Robust multi-objective optimisation in electromagnetic design“. Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/415498/.
Der volle Inhalt der QuelleRamadan, Saleem Z. „Bayesian Multi-objective Design of Reliability Testing“. Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1298474937.
Der volle Inhalt der QuelleEl-Sayed, Jacqueline Johnson. „Multi-objective optimization of manufacturing processes design /“. free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841282.
Der volle Inhalt der QuelleFaragalli, Michele. „Multi-objective design optimization of compliant lunar wheels“. Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117030.
Der volle Inhalt der QuelleLe développement de la roue treillis métallique de l'Apollo Lunar Roving Vehicle a été réalisé par un processus d'essais et d'erreurs. Les récents développements de roues flexibles, motivé par un regain d'intérêt pour l'exploration lunaire, ont maintenant à leur disposition des outils de simulation numérique plus sophistiqués. Cependant, la majorité des chercheurs emploient toujours des méthodes expérimentales ou paramétriques pour développer leurs roues. Cette thèse propose une nouvelle approche systématique pour l'optimisation de concepts de roues lunaires flexibles. Le problème est décomposé en deux analyses se rapportant au niveau du système et celui des composantes. L'analyse au niveau du système étudie l'effet du comportement de la roue élastique sur des mesures de performance lors d'une mission du rover. Ceci est réalisé en optimisant les paramètres décrivant une roue flexible à l'aide de modèles multidisciplinaires. Différents concepts de roues sont explorés à l'aide de prototypes et d'essais physiques, ainsi que de modélisations numériques. La performance de chacun des concepts de roues flexibles cellulaires, iRings et segmentés sont comparées à un pneu standard. L'analyse au niveau des composantes effectue une optimisation multi-objective afin de déterminer, par le biais de simulations numériques, le concept optimal de roues flexibles cellulaires. L'efficacité de la méthodologie pour optimiser la roue cellulaire est ensuite vérifiée et les limites de cette approche sont examinées en détail. Finalement, une discussion sur l'application de la méthodologie proposée à des concepts de roues arbitraires est abordée.
Skinner, Benjamin Adam. „Multi-objective evolutionary optimisation of submarine propulsion design“. Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611230.
Der volle Inhalt der QuelleBrown, Nathan C. (Nathan Collin). „Early building design using multi-objective data approaches“. Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123573.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 201-219).
During the design process in architecture, building performance and human experience are increasingly understood through computation. Within this context, this dissertation considers how data science and interactive optimization techniques can be combined to make simulation a more effective component of a natural early design process. It focuses on conceptual design, since technical principles should be considered when global decisions are made concerning the massing, structural system, and other design aspects that affect performance. In this early stage, designers might simulate structure, energy, daylighting, thermal comfort, acoustics, cost, and other quantifiable objectives. While parametric simulations offer the possibility of using a design space exploration framework to make decisions, their resulting feedback must be synthesized together, along with non-quantifiable design goals.
Previous research has developed optimization strategies to handle such multi-objective scenarios, but opportunities remain to further adapt optimization for the creative task of early building design, including increasing its interactivity, flexibility, accessibility, and ability to both support divergent brainstorming and enable focused performance improvement. In response, this dissertation proposes new approaches to parametric design space formulation, interactive optimization, and diversity-based design. These methods span in utility from early ideation, through global design exploration, to local exploration and optimization. The first presented technique uses data science methods to interrogate, transform, and, for specific cases, generate design variables for exploration. The second strategy involves interactive stepping through a design space using estimated gradient information, which offers designers more freedom compared to automated solvers during local exploration.
The third method addresses computational measurement of diversity within parametric design and demonstrates how such measurements can be integrated into creative design processes. These contributions are demonstrated on an integrated early design example and preliminarily validated using a design study that provides feedback on the habits and preferences of architects and engineers while engaging with data-driven tools. This study reveals that performance-enabled environments tend to improve simulated design objectives, while designers prefer more flexibility than traditional automated optimization approaches when given the choice. Together, these findings can stimulate further development in the integration of interactive approaches to multi-objective early building design. Key words: design space exploration, conceptual design, design tradeoffs, interactive design tools, structural design, sustainable design, multi-objective optimization, data science, surrogate modeling
by Nathan C. Brown.
Ph. D. in Architecture: Building Technology
Ph.D.inArchitecture:BuildingTechnology Massachusetts Institute of Technology, Department of Architecture
Paik, Sangwook. „Multi-objective optimal design of steel trusses in unstructured design domains“. Thesis, Texas A&M University, 2005. http://hdl.handle.net/1969.1/3124.
Der volle Inhalt der QuelleBücher zum Thema "Multi-objective Design"
Liu, Aying. A multi-objective and multi-design evaluation procedure for environmental protection forestry. Portsmouth: University of Portsmouth, Department of Economics, 1997.
Den vollen Inhalt der Quelle findenWang, Lihui, Amos H. C. Ng und Kalyanmoy Deb, Hrsg. Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-652-8.
Der volle Inhalt der QuelleSilvano, Cristina, William Fornaciari und Eugenio Villar, Hrsg. Multi-objective Design Space Exploration of Multiprocessor SoC Architectures. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8837-9.
Der volle Inhalt der QuelleC, Ng Amos H., Deb Kalyanmoy und SpringerLink (Online service), Hrsg. Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. London: Springer-Verlag London Limited, 2011.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Multi-objective decision-making under uncertainty: Fuzzy logic methods. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Multi-objective decision-making under uncertainty: Fuzzy logic methods. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenS, Rao S. Applications of fuzzy theories to multi-objective system optimization. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1991.
Den vollen Inhalt der Quelle findenCenter, Lewis Research, und United States. National Aeronautics and Space Administration., Hrsg. Multi objective controller design for linear systems via optimal interpolation. [Columbus, Ohio]: Ohio State University, 1996.
Den vollen Inhalt der Quelle findenCenter, Lewis Research, und United States. National Aeronautics and Space Administration., Hrsg. Multi objective controller design for linear systems via optimal interpolation. [Columbus, Ohio]: Ohio State University, 1996.
Den vollen Inhalt der Quelle findenSaravanos, D. A. Multi-objective shape and material optimization of composite structures including damping. [Washington, D.C.]: NASA, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Multi-objective Design"
Han, Xu, und Jie Liu. „Micro Multi-objective Genetic Algorithm“. In Numerical Simulation-based Design, 153–78. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-3090-1_9.
Der volle Inhalt der QuelleChen, Yi, und Yun Li. „Extra‐Numerical Multi‐Objective optimization“. In Computational Intelligence Assisted Design, 115–23. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2018. | "A science publishers book.": CRC Press, 2018. http://dx.doi.org/10.1201/9781315153179-8.
Der volle Inhalt der QuelleSun, Jian-Qiao, Fu-Rui Xiong, Oliver Schütze und Carlos Hernández. „Multi-objective Optimal Control Design“. In Cell Mapping Methods, 149–68. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0457-6_10.
Der volle Inhalt der QuelleSun, Jian-Qiao, Fu-Rui Xiong, Oliver Schütze und Carlos Hernández. „Multi-objective Optimal Structure Design“. In Cell Mapping Methods, 169–90. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0457-6_11.
Der volle Inhalt der QuelleSun, Jian-Qiao, Fu-Rui Xiong, Oliver Schütze und Carlos Hernández. „Multi-objective Optimal Airfoil Design“. In Cell Mapping Methods, 191–202. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0457-6_12.
Der volle Inhalt der QuelleHan, Xu, und Jie Liu. „Introduction to Multi-objective Optimization Design“. In Numerical Simulation-based Design, 141–51. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-3090-1_8.
Der volle Inhalt der QuelleParmee, Ian C. „Multi-objective Satisfaction and Optimisation“. In Evolutionary and Adaptive Computing in Engineering Design, 177–203. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0273-1_10.
Der volle Inhalt der QuelleJerin Leno, I., S. Saravana Sankar und S. G. Ponnambalam. „Multi Objective Integrated Layout Design Problem“. In Swarm, Evolutionary, and Memetic Computing, 500–508. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35380-2_59.
Der volle Inhalt der QuelleD’Errico, Fabrizio. „Multi-Objective Optimization in Engineering Design“. In SpringerBriefs in Materials, 33–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13030-9_2.
Der volle Inhalt der QuelleM’laouhi, Ibrahim, Najeh Ben Guedria und Hichem Smaoui. „Multi-objective Discrete Rotor Design Optimization“. In Condition Monitoring of Machinery in Non-Stationary Operations, 193–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28768-8_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multi-objective Design"
Liu, Yiwei, Yiping Liu, Jiahao Yang, Xinyi Zhang, Li Wang und Xiangxiang Zeng. „Multi-Objective Molecular Design in Constrained Latent Space“. In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651509.
Der volle Inhalt der QuelleJian, Huang, und Wang Yihan. „Asset Optimization Scheme Design with Multi-Objective Optimization“. In 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/iciteics61368.2024.10625611.
Der volle Inhalt der QuelleWen, Yi, Wei Ye und Gang Yu. „A Hybrid Multi-objective Model for Multi-story Warehouse Design: A Case Study in Shenzhen“. In CAADRIA 2024: Accelerated Design, 283–92. CAADRIA, 2024. http://dx.doi.org/10.52842/conf.caadria.2024.1.283.
Der volle Inhalt der QuelleZangl, H., und G. Steiner. „Optimal design of multi-objective multi-sensor systems“. In Proceedings of the 2005 IEEE International Workshop on Advanced Methods for Uncertainty Estimation in Measurement. IEEE, 2005. http://dx.doi.org/10.1109/amuem.2005.1594616.
Der volle Inhalt der QuelleYuan-Chang Chang, Li-Wei Kuo und Jenq-Lang Wu. „Reliable multi-objective decentralized controller design“. In 2010 International Conference on System Science and Engineering (ICSSE). IEEE, 2010. http://dx.doi.org/10.1109/icsse.2010.5551749.
Der volle Inhalt der QuelleWang, Wei, Xin-long Chang, You-hong Zhang und Chun-wen Wang. „Composite Laminated Multi-Objective Optimization Design“. In 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). IEEE, 2020. http://dx.doi.org/10.1109/aiea51086.2020.00134.
Der volle Inhalt der QuelleKeough, Ian, und David Benjamin. „Multi-objective optimization in architectural design“. In the 2010 Spring Simulation Multiconference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1878537.1878736.
Der volle Inhalt der QuelleRojas, José David, und Victor M. Alfaro. „Multi-objective design of industrial controllers“. In 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC). IEEE, 2017. http://dx.doi.org/10.1109/ccac.2017.8320344.
Der volle Inhalt der QuelleKor, Jean, Xiang Chen, Zhizhong Sun und Henry Hu. „Casting Design through Multi-objective Optimization“. In 2009 Second International Conference on Future Information Technology and Management Engineering (FITME). IEEE, 2009. http://dx.doi.org/10.1109/fitme.2009.156.
Der volle Inhalt der QuellePoian, M., S. Poles, F. Bernasconi, E. Leroux, W. Steffe und M. Zolesi. „Multi-objective optimization for antenna design“. In 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS). IEEE, 2008. http://dx.doi.org/10.1109/comcas.2008.4562817.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Multi-objective Design"
Kuprowicz, Nicholas J. The Integrated Multi-Objective Multi-Disciplinary Jet Engine Design Optimization Program. Fort Belvoir, VA: Defense Technical Information Center, Januar 1999. http://dx.doi.org/10.21236/ada372032.
Der volle Inhalt der QuelleFernandez, Ruben, Hernando Lugo und Georfe Dulikravich. Aerodynamic Shape Multi-Objective Optimization for SAE Aero Design Competition Aircraft. Florida International University, Oktober 2021. http://dx.doi.org/10.25148/mmeurs.009778.
Der volle Inhalt der QuelleWenren, Yonghu, Joon Lim, Luke Allen, Robert Haehnel und Ian Dettwiler. Helicopter rotor blade planform optimization using parametric design and multi-objective genetic algorithm. Engineer Research and Development Center (U.S.), Dezember 2022. http://dx.doi.org/10.21079/11681/46261.
Der volle Inhalt der QuelleDulikravich, George S., Igor N. Egorov, Vinod K. Sikka und G. Muralidharan. Alloys-by-Design Strategies Using Stochastic Multi-Objective Optimization: Initial Formulation and Results. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada416083.
Der volle Inhalt der QuelleBau, Domenico. Recovery Act: Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems. Office of Scientific and Technical Information (OSTI), Mai 2013. http://dx.doi.org/10.2172/1097612.
Der volle Inhalt der QuelleBarlow, Gregory J. Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles Using Multi-Objective Genetic Programming. Fort Belvoir, VA: Defense Technical Information Center, März 2004. http://dx.doi.org/10.21236/ada460111.
Der volle Inhalt der QuelleKobayashi, Marcelo H. (HBCU) Development and Application of a Biologically Inspired Methodology for the Optimized, Multi-Disciplinary and Multi-Objective Design of Air Vehicles. Fort Belvoir, VA: Defense Technical Information Center, Mai 2013. http://dx.doi.org/10.21236/ada584389.
Der volle Inhalt der QuelleChoi, Yong-Joon, Mohammad M Mostafa Abdo, Yong-Joon Choi, Juan Luque Gutierrez, Jason Hou, Christoper Gosdin und Jarrett Valeri. Pressurized-Water Reactor Core Design Demonstration with Genetic Algorithm Based Multi-Objective Plant Fuel Reload Optimization Platform. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2006453.
Der volle Inhalt der QuelleChoi, Yong-Joon, Junyung Kim, Mohammad M Mostafa Abdo, Juan Luque Gutierrez, Jason Hou, Christoper Gosdin und Jarrett Valeri. Pressurized-Water Reactor Core Design Demonstration with Genetic Algorithm Based Multi-Objective Plant Fuel Reload Optimization Platform. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2006437.
Der volle Inhalt der QuelleAllen, Luke, Joon Lim, Robert Haehnel und Ian Dettwiller. Helicopter rotor blade multiple-section optimization with performance. Engineer Research and Development Center (U.S.), Juni 2021. http://dx.doi.org/10.21079/11681/41031.
Der volle Inhalt der Quelle