Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multi-Camera network“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multi-Camera network" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multi-Camera network"
Wu, Yi-Chang, Ching-Han Chen, Yao-Te Chiu und Pi-Wei Chen. „Cooperative People Tracking by Distributed Cameras Network“. Electronics 10, Nr. 15 (25.07.2021): 1780. http://dx.doi.org/10.3390/electronics10151780.
Der volle Inhalt der QuelleR.Kennady, Et al. „A Nonoverlapping Vision Field Multi-Camera Network for Tracking Human Build Targets“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 3 (31.03.2023): 366–69. http://dx.doi.org/10.17762/ijritcc.v11i3.9871.
Der volle Inhalt der QuelleZhao, Guoliang, Yuxun Zhou, Zhanbo Xu, Yadong Zhou und Jiang Wu. „Hierarchical Multi-Supervision Multi-Interaction Graph Attention Network for Multi-Camera Pedestrian Trajectory Prediction“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 4 (28.06.2022): 4698–706. http://dx.doi.org/10.1609/aaai.v36i4.20395.
Der volle Inhalt der QuelleSharma, Anil, Saket Anand und Sanjit K. Kaul. „Reinforcement Learning Based Querying in Camera Networks for Efficient Target Tracking“. Proceedings of the International Conference on Automated Planning and Scheduling 29 (25.05.2021): 555–63. http://dx.doi.org/10.1609/icaps.v29i1.3522.
Der volle Inhalt der QuelleLi, Xiaolin, Wenhui Dong, Faliang Chang und Peishu Qu. „Topology Learning of Non-overlapping Multi-camera Network“. International Journal of Signal Processing, Image Processing and Pattern Recognition 8, Nr. 11 (30.11.2015): 243–54. http://dx.doi.org/10.14257/ijsip.2015.8.11.22.
Der volle Inhalt der QuelleLiu, Xin, Herman G. J. Groot, Egor Bondarev und Peter H. N. de With. „Introducing Scene Understanding to Person Re-Identification using a Spatio-Temporal Multi-Camera Model“. Electronic Imaging 2020, Nr. 10 (26.01.2020): 95–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.10.ipas-095.
Der volle Inhalt der QuelleHe, Li, Guoliang Liu, Guohui Tian, Jianhua Zhang und Ze Ji. „Efficient Multi-View Multi-Target Tracking Using a Distributed Camera Network“. IEEE Sensors Journal 20, Nr. 4 (15.02.2020): 2056–63. http://dx.doi.org/10.1109/jsen.2019.2949385.
Der volle Inhalt der QuelleLi, Yun-Lun, Hao-Ting Li und Chen-Kuo Chiang. „Multi-Camera Vehicle Tracking Based on Deep Tracklet Similarity Network“. Electronics 11, Nr. 7 (24.03.2022): 1008. http://dx.doi.org/10.3390/electronics11071008.
Der volle Inhalt der QuelleTruong, Philips, Deligiannis, Abrahamyan und Guan. „Automatic Multi-Camera Extrinsic Parameter Calibration Based on Pedestrian Torsors †“. Sensors 19, Nr. 22 (15.11.2019): 4989. http://dx.doi.org/10.3390/s19224989.
Der volle Inhalt der QuelleSumathy, R. „Face Recognition in Multi Camera Network with Sh Feature“. International Journal of Modern Education and Computer Science 7, Nr. 5 (08.05.2015): 59–64. http://dx.doi.org/10.5815/ijmecs.2015.05.08.
Der volle Inhalt der QuelleDissertationen zum Thema "Multi-Camera network"
Zhao, Jian. „Camera Planning and Fusion in a Heterogeneous Camera Network“. UKnowledge, 2011. http://uknowledge.uky.edu/ece_etds/2.
Der volle Inhalt der QuelleGuillén, Alejandro. „Implementation of a Distributed Algorithm for Multi-camera Visual Feature Extraction in a Visual Sensor Network Testbed“. Thesis, KTH, Kommunikationsnät, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-167415.
Der volle Inhalt der QuelleJeong, Kideog. „OBJECT MATCHING IN DISJOINT CAMERAS USING A COLOR TRANSFER APPROACH“. UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_theses/434.
Der volle Inhalt der QuelleMacknojia, Rizwan. „Design and Calibration of a Network of RGB-D Sensors for Robotic Applications over Large Workspaces“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23976.
Der volle Inhalt der QuelleChen, Huiqin. „Registration of egocentric views for collaborative localization in security applications“. Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG031.
Der volle Inhalt der QuelleThis work focuses on collaborative localization between a mobile camera and a static camera for video surveillance. In crowd scenes and sensitive events, surveillance involves locating the wearer of the camera (typically a security officer) and also the events observed in the images (e.g., to guide emergency services). However, the different points of view between the mobile camera (at ground level), and the video surveillance camera (located high up), along with repetitive patterns and occlusions make difficult the tasks of relative calibration and localization. We first studied how low-cost positioning and orientation sensors (GPS-IMU) could help refining the estimate of relative pose between cameras. We then proposed to locate the mobile camera using its epipole in the image of the static camera. To make this estimate robust with respect to outlier keypoint matches, we developed two algorithms: either based on a cumulative approach to derive an uncertainty map, or exploiting the belief function framework. Facing with the issue of a large number of elementary sources, some of which are incompatible, we provide a solution based on a belief clustering, in the perspective of further combination with other sources (such as pedestrian detectors and/or GPS data for our application). Finally, the individual location in the scene led us to the problem of data association between views. We proposed to use geometric descriptors/constraints, in addition to the usual appearance descriptors. We showed the relevance of this geometric information whether it is explicit, or learned using a neural network
Konda, Krishna Reddy. „Dynamic Camera Positioning and Reconfiguration for Multi-Camera Networks“. Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/367752.
Der volle Inhalt der QuelleKonda, Krishna Reddy. „Dynamic Camera Positioning and Reconfiguration for Multi-Camera Networks“. Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1386/1/PhD-Thesis.pdf.
Der volle Inhalt der QuelleDziri, Aziz. „Suivi visuel d'objets dans un réseau de caméras intelligentes embarquées“. Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22610/document.
Der volle Inhalt der QuelleMulti-object tracking constitutes a major step in several computer vision applications. The requirements of these applications in terms of performance, processing time, energy consumption and the ease of deployment of a visual tracking system, make the use of low power embedded platforms essential. In this thesis, we designed a multi-object tracking system that achieves real time processing on a low cost and a low power embedded smart camera. The tracking pipeline was extended to work in a network of cameras with nonoverlapping field of views. The tracking pipeline is composed of a detection module based on a background subtraction method and on a tracker using the probabilistic Gaussian Mixture Probability Hypothesis Density (GMPHD) filter. The background subtraction, we developed, is a combination of the segmentation resulted from the Zipfian Sigma-Delta method with the gradient of the input image. This combination allows reliable detection with low computing complexity. The output of the background subtraction is processed using a connected components analysis algorithm to extract the features of moving objects. The features are used as input to an improved version of GMPHD filter. Indeed, the original GMPHD do not manage occlusion problems. We integrated two new modules in GMPHD filter to handle occlusions between objects. If there are no occlusions, the motion feature of objects is used for tracking. When an occlusion is detected, the appearance features of the objects are saved to be used for re-identification at the end of the occlusion. The proposed tracking pipeline was optimized and implemented on an embedded smart camera composed of the Raspberry Pi version 1 board and the camera module RaspiCam. The results show that besides the low complexity of the pipeline, the tracking quality of our method is close to the stat of the art methods. A frame rate of 15 − 30 was achieved on the smart camera depending on the image resolution. In the second part of the thesis, we designed a distributed approach for multi-object tracking in a network of non-overlapping cameras. The approach was developed based on the fact that each camera in the network runs a GMPHD filter as a tracker. Our approach is based on a probabilistic formulation that models the correspondences between objects as an appearance probability and space-time probability. The appearance of an object is represented by a vector of m dimension, which can be considered as a histogram. The space-time features are represented by the transition time between two input-output regions in the network and the transition probability from a region to another. Transition time is modeled as a Gaussian distribution with known mean and covariance. The distributed aspect of the proposed approach allows a tracking over the network with few communications between the cameras. Several simulations were performed to validate the approach. The obtained results are promising for the use of this approach in a real network of smart cameras
Tahir, Syed Fahad. „Resource-constrained re-identification in camera networks“. Thesis, Queen Mary, University of London, 2016. http://qmro.qmul.ac.uk/xmlui/handle/123456789/36123.
Der volle Inhalt der QuelleYildiz, Enes. „PROVIDING MULTI-PERSPECTIVE COVERAGE IN WIRELESS MULTIMEDIA SENSOR NETWORKS“. OpenSIUC, 2011. https://opensiuc.lib.siu.edu/theses/717.
Der volle Inhalt der QuelleBücher zum Thema "Multi-Camera network"
K, Aghajan Hamid, Cavallaro Andrea und ScienceDirect (Online service), Hrsg. Multi-camera networks: Principles and applications. Amsterdam: Elsevier, AP, 2009.
Den vollen Inhalt der Quelle findenMulti-Camera Networks. Elsevier, 2009. http://dx.doi.org/10.1016/b978-0-12-374633-7.x0001-8.
Der volle Inhalt der QuelleCavallaro, Andrea, und Hamid Aghajan. Multi-Camera Networks: Principles and Applications. Elsevier Science & Technology Books, 2009.
Den vollen Inhalt der Quelle findenBeach, David Michael. Multi-camera benchmark localization for mobile robot networks. 2004.
Den vollen Inhalt der Quelle findenBeach, David Michael. Multi-camera benchmark localization for mobile robot networks. 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Multi-Camera network"
Koyama, Takashi, und Yusuke Gotoh. „Multi-camera Live Video Streaming over Wireless Network“. In Advances in Mobile Computing and Multimedia Intelligence, 144–58. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-48348-6_12.
Der volle Inhalt der QuelleXing, Chang, Sichen Bai, Yi Zhou, Zhong Zhou und Wei Wu. „Coarse-to-Fine Multi-camera Network Topology Estimation“. In Advances in Multimedia Information Processing – PCM 2017, 981–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77383-4_96.
Der volle Inhalt der QuelleBo Bo, Nyan, Maarten Slembrouck, Peter Veelaert und Wilfried Philips. „Distributed Multi-class Road User Tracking in Multi-camera Network For Smart Traffic Applications“. In Advanced Concepts for Intelligent Vision Systems, 517–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40605-9_44.
Der volle Inhalt der QuelleMavrinac, Aaron, Jose Luis Alarcon Herrera und Xiang Chen. „Evaluating the Fuzzy Coverage Model for 3D Multi-camera Network Applications“. In Intelligent Robotics and Applications, 692–701. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16584-9_66.
Der volle Inhalt der QuelleChoudhary, Ayesha, Shubham Sharma, Indu Sreedevi und Santanu Chaudhury. „Real-Time Distributed Multi-object Tracking in a PTZ Camera Network“. In Lecture Notes in Computer Science, 183–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19941-2_18.
Der volle Inhalt der QuelleChen, Xiaotang, Kaiqi Huang und Tieniu Tan. „Learning the Three Factors of a Non-overlapping Multi-camera Network Topology“. In Communications in Computer and Information Science, 104–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33506-8_14.
Der volle Inhalt der QuelleShang, Yang, Qifeng Yu, Yong Xu, Guangwen Jiang, Xiaolin Liu, Sihua Fu, Xianwei Zhu und Xiaochun Liu. „An Innovative Multi-headed Camera Network: A Displacement-Relay Videometrics Method in Unstable Areas“. In Fringe 2013, 871–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36359-7_161.
Der volle Inhalt der QuelleTran, Quang Khoi, Khanh Hieu Ngo, Anh Huy Le Dinh, Lu Tien Truong, Hai Quan Tran und Anh Tuan Trinh. „Development of a Real-Time Obstacle Detection System on Embedded Computer Based on Neural Network and Multi-camera Streaming“. In Intelligent Systems and Networks, 298–308. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3394-3_35.
Der volle Inhalt der QuelleÇaldıran, Bekir Eren, und Tankut Acarman. „Multi-network for Joint Detection of Dynamic and Static Objects in a Road Scene Captured by an RGB Camera“. In Lecture Notes in Networks and Systems, 837–51. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4960-9_63.
Der volle Inhalt der QuelleSankaranarayanan, Aswin C., Rama Chellappa und Richard G. Baraniuk. „Distributed Sensing and Processing for Multi-Camera Networks“. In Distributed Video Sensor Networks, 85–101. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-127-1_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multi-Camera network"
Chang, I.-Cheng, Jia-Hong Yang und Yi-Hsiang Liao. „Multi-Camera Based Social Network Analysis“. In 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). IEEE, 2012. http://dx.doi.org/10.1109/iih-msp.2012.48.
Der volle Inhalt der QuelleGao, Yi, Wanneng Wu, Ao Liu, Qiaokang Liang und Jianwen Hu. „Multi-Target Multi-Camera Tracking with Spatial-Temporal Network“. In 2023 7th International Symposium on Computer Science and Intelligent Control (ISCSIC). IEEE, 2023. http://dx.doi.org/10.1109/iscsic60498.2023.00048.
Der volle Inhalt der QuelleGanti, Raghu, Mudhakar Srivatsa und B. S. Manjunath. „Entity reconciliation in a multi-camera network“. In ICDCN '16: 17th International Conference on Distributed Computing and Networking. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2833312.2849566.
Der volle Inhalt der QuelleMhiri, Rawia, Hichem Maiza, Stephane Mousset, Khaled Taouil, Pascal Vasseur und Abdelaziz Bensrhair. „Obstacle detection using unsynchronized multi-camera network“. In 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2015. http://dx.doi.org/10.1109/urai.2015.7358917.
Der volle Inhalt der QuellePeng, Peixi, Yonghong Tian, Yaowei Wang und Tiejun Huang. „Multi-camera Pedestrian Detection with Multi-view Bayesian Network Model“. In British Machine Vision Conference 2012. British Machine Vision Association, 2012. http://dx.doi.org/10.5244/c.26.69.
Der volle Inhalt der QuelleSchriebl, Wolfgang, Thomas Winkler, Andreas Starzacher und Bernhard Rinner. „A pervasive smart camera network architecture applied for multi-camera object classification“. In 2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC). IEEE, 2009. http://dx.doi.org/10.1109/icdsc.2009.5289377.
Der volle Inhalt der QuellePanda, Rameswar, Abir Dasy und Amit K. Roy-Chowdhury. „Video summarization in a multi-view camera network“. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900089.
Der volle Inhalt der QuelleShen, Edward, G. Peter K. Carr, Paul Thomas und Richard Hornsey. „Non-planar target for multi-camera network calibration“. In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398433.
Der volle Inhalt der QuelleDai, Xiaochen, und Shahram Payandeh. „Tracked Object Association in Multi-camera Surveillance Network“. In 2013 IEEE International Conference on Systems, Man and Cybernetics (SMC 2013). IEEE, 2013. http://dx.doi.org/10.1109/smc.2013.724.
Der volle Inhalt der QuelleJunejo, Imran, Xiaochun Cao und Hassan Foroosh. „Geometry of a Non-Overlapping Multi-Camera Network“. In 2006 IEEE International Conference on Video and Signal Based Surveillance. IEEE, 2006. http://dx.doi.org/10.1109/avss.2006.53.
Der volle Inhalt der Quelle