Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multi-Branch generative models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multi-Branch generative models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multi-Branch generative models"
Xiong, Zuobin, Wei Li und Zhipeng Cai. „Federated Generative Model on Multi-Source Heterogeneous Data in IoT“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 9 (26.06.2023): 10537–45. http://dx.doi.org/10.1609/aaai.v37i9.26252.
Der volle Inhalt der QuelleSafarov, Furkat, Ugiloy Khojamuratova, Misirov Komoliddin, Furkat Bolikulov, Shakhnoza Muksimova und Young-Im Cho. „MBGPIN: Multi-Branch Generative Prior Integration Network for Super-Resolution Satellite Imagery“. Remote Sensing 17, Nr. 5 (25.02.2025): 805. https://doi.org/10.3390/rs17050805.
Der volle Inhalt der QuelleNiu, Zhenye, Yuxia Li, Yushu Gong, Bowei Zhang, Yuan He, Jinglin Zhang, Mengyu Tian und Lei He. „Multi-Class Guided GAN for Remote-Sensing Image Synthesis Based on Semantic Labels“. Remote Sensing 17, Nr. 2 (20.01.2025): 344. https://doi.org/10.3390/rs17020344.
Der volle Inhalt der QuelleMeng, Xiang Bao, Lei Wang und Zi Jian Pan. „Parametric Modeling of Transition Tube with Constant Section Area along Straight, Circular and Oblique Central Route on CATIA“. Advanced Materials Research 619 (Dezember 2012): 18–21. http://dx.doi.org/10.4028/www.scientific.net/amr.619.18.
Der volle Inhalt der QuelleShen, Qiwei, Junjie Xu, Jiahao Mei, Xingjiao Wu und Daoguo Dong. „EmoStyle: Emotion-Aware Semantic Image Manipulation with Audio Guidance“. Applied Sciences 14, Nr. 8 (10.04.2024): 3193. http://dx.doi.org/10.3390/app14083193.
Der volle Inhalt der QuelleGuo, Xiaoqiang, Xinhua Liu, Grzegorz Królczyk, Maciej Sulowicz, Adam Glowacz, Paolo Gardoni und Zhixiong Li. „Damage Detection for Conveyor Belt Surface Based on Conditional Cycle Generative Adversarial Network“. Sensors 22, Nr. 9 (03.05.2022): 3485. http://dx.doi.org/10.3390/s22093485.
Der volle Inhalt der QuelleWang, Jiawei, und Zhen Chen. „Factor-GAN: Enhancing stock price prediction and factor investment with Generative Adversarial Networks“. PLOS ONE 19, Nr. 6 (25.06.2024): e0306094. http://dx.doi.org/10.1371/journal.pone.0306094.
Der volle Inhalt der QuelleAo, Zhuoyu, Weixi Wang, Yaoyu Li, Hongsheng Huang, Xiaoming Li, Renzhong Guo und Shengjun Tang. „Structured Generation Method of 3D Synthetic Tree Models for Precision Assessment“. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-1-2024 (10.05.2024): 7–12. http://dx.doi.org/10.5194/isprs-archives-xlviii-1-2024-7-2024.
Der volle Inhalt der QuelleMednikov, Aleksandr, Alexey Maksimov und Elina Tyurina. „Mathematical modeling of mini-CHP based on biomass“. E3S Web of Conferences 69 (2018): 02005. http://dx.doi.org/10.1051/e3sconf/20186902005.
Der volle Inhalt der QuelleRebuffel, Clement, Marco Roberti, Laure Soulier, Geoffrey Scoutheeten, Rossella Cancelliere und Patrick Gallinari. „Controlling hallucinations at word level in data-to-text generation“. Data Mining and Knowledge Discovery 36, Nr. 1 (22.10.2021): 318–54. http://dx.doi.org/10.1007/s10618-021-00801-4.
Der volle Inhalt der QuelleDissertationen zum Thema "Multi-Branch generative models"
Pinton, Noel Jeffrey. „Reconstruction synergique TEP/TDM à l'aide de l'apprentissage profond“. Electronic Thesis or Diss., Brest, 2024. http://www.theses.fr/2024BRES0123.
Der volle Inhalt der QuelleThe widespread adoption of hybrid Positron emission tomography (PET)/Computed tomography (CT) scanners has led to a significant increase in the availability of combined PET/CT imaging data. However, current methodologies often process each modality independently, overlooking the potential to enhance image quality by leveraging the complementary anatomical and functional information intrinsic to each modality. Exploiting intermodal information has the potential to improve both PET and CT reconstructions by providing a synergistic view of anatomical and functional details. This thesis introduces a novel approach for synergistic reconstruction of medical images using multi-branch generative models. By employing variational autoencoders (VAEs) with a multi-branch architecture, our model simultaneously learns from paired PET and CT images,allowing for effective joint denoising and highfidelity reconstruction of both modalities. Beyond improving image quality, this framework also paves the way for future advancements in multi-modal medical imaging, highlighting the transformative potential of integrated approaches for hybrid imaging modalities in clinical and research settings
Buchteile zum Thema "Multi-Branch generative models"
He, Xiaoxu, und Mingyu Sun. „Biomimetic Form-Finding Study of Bone Needle Microstructure Based on Sponge Regeneration Behavior“. In Computational Design and Robotic Fabrication, 90–101. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8405-3_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multi-Branch generative models"
Ling, Zeyu, Bo Han, Yongkang Wong, Han Lin, Mohan Kankanhalli und Weidong Geng. „MCM: Multi-condition Motion Synthesis Framework“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/120.
Der volle Inhalt der QuelleLi, Yu-Lei. „Unsupervised Embedding and Association Network for Multi-Object Tracking“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/157.
Der volle Inhalt der QuelleUrata, Kazuya, Ryo Tsumoto, Kentaro Yaji und Kikuo Fujita. „Multi-Stage Optimal Design for Turbulent Pipe Systems by Data-Driven Morphological Exploration and Evolutionary Shape Optimization“. In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-143383.
Der volle Inhalt der QuelleGijrath, Hans, und Mats A˚bom. „A Matrix Formalism for Fluid-Borne Sound in Pipe Systems“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33356.
Der volle Inhalt der QuelleGuo, Hang, Tao Dai, Guanghao Meng und Shu-Tao Xia. „Towards Robust Scene Text Image Super-resolution via Explicit Location Enhancement“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/87.
Der volle Inhalt der QuelleWu, Tong, Bicheng Dai, Shuxin Chen, Yanyun Qu und Yuan Xie. „Meta Segmentation Network for Ultra-Resolution Medical Images“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/76.
Der volle Inhalt der QuelleErol, Anil, Saad Ahmed, Paris von Lockette und Zoubeida Ounaies. „Analysis of Microstructure-Based Network Models for the Nonlinear Electrostriction Modeling of Electro-Active Polymers“. In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3979.
Der volle Inhalt der Quelle