Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Motility of leukemia cells“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Motility of leukemia cells" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Motility of leukemia cells"
Raje, Manoj, und Karvita B. Ahluwalia. „Motility of leukemic lymphocytes“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 3 (12.08.1990): 368–69. http://dx.doi.org/10.1017/s0424820100159382.
Der volle Inhalt der QuelleLiu, Hsiao-Chuan, Eun Ji Gang, Hye Na Kim, Yongsheng Ruan, Heather Ogana, Zesheng Wan, Halvard Bönig, K. Kirk Shung und Yong-Mi Kim. „Characterizing the Motility of Chemotherapeutics-Treated Acute Lymphoblastic Leukemia Cells by Time-Lapse Imaging“. Cells 9, Nr. 6 (16.06.2020): 1470. http://dx.doi.org/10.3390/cells9061470.
Der volle Inhalt der QuelleOkabe-Kado, Junko, Takashi Kasukabe, Yoshio Honma und Yasuhiko Kaneko. „Inverse Correlation of NM23 Expression with Lysophosphatidic Acid Receptor EDG2/lpa1 Expression of Human Leukemia Cells during Myeloid Differentiation Induced by All-Trans Retinoic Acid“. Blood 112, Nr. 11 (16.11.2008): 4490. http://dx.doi.org/10.1182/blood.v112.11.4490.4490.
Der volle Inhalt der QuelleResar, Linda, Joelle Hillion, Surajit Dhara, Takita Felder Sumter, Mita Mukherjee, Francescopaolo Di Cello, Amy Belton et al. „The HMGA1a-STAT3 axis: an “Achilles Heel” for Hematopoietic Malignancies Overexpressing HMGA1a?“ Blood 112, Nr. 11 (16.11.2008): 3810. http://dx.doi.org/10.1182/blood.v112.11.3810.3810.
Der volle Inhalt der QuelleSchwieger, Maike, Andrea Schüler, Martin Forster, Afra Engelmann, Michael A. Arnold, Ruud Delwel, Peter J. Valk et al. „Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C“. Blood 114, Nr. 12 (17.09.2009): 2476–88. http://dx.doi.org/10.1182/blood-2008-05-158196.
Der volle Inhalt der QuelleHogeman, P. H. G., A. J. P. Veerman, D. R. Huismans, C. H. van Zantwijk und P. D. Bezemer. „Motility of Leukemic Cells in Collagen Gel Related to Immunological Phenotype in Childhood Acute Lymphoblastic Leukemia“. Acta Haematologica 78, Nr. 4 (1987): 229–32. http://dx.doi.org/10.1159/000205883.
Der volle Inhalt der QuelleKornblau, Steven M., Andrew Pierce, Stefan Meyer, Farhad Ravandi, Gautam Borthakur, Kevin R. Coombes, Nianxiang Zhang und Anthony Whetton. „Transglutaminase2 Expression in Acute Myeloid Leukemia: Association with Adhesion Molecule Expression and Leukemic Blast Motility“. Blood 120, Nr. 21 (16.11.2012): 1427. http://dx.doi.org/10.1182/blood.v120.21.1427.1427.
Der volle Inhalt der QuelleCasalegno-Garduño, R., C. Meier, A. Schmitt, A. Spitschak, I. Hilgendorf, S. Rohde, C. Hirt, M. Freund, B. M. Pützer und M. Schmitt. „Immune Responses to RHAMM in Patients with Acute Myeloid Leukemia after Chemotherapy and Allogeneic Stem Cell Transplantation“. Clinical and Developmental Immunology 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/146463.
Der volle Inhalt der QuelleIkeyama, S., M. Koyama, M. Yamaoko, R. Sasada und M. Miyake. „Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA.“ Journal of Experimental Medicine 177, Nr. 5 (01.05.1993): 1231–37. http://dx.doi.org/10.1084/jem.177.5.1231.
Der volle Inhalt der QuelleTavor, Sigal, Isabelle Petit, Svetlana Porozov, Polina Goichberg, Abraham Avigdor, Sari Sagiv, Arnon Nagler, Elizabeth Naparstek und Tsvee Lapidot. „Motility, proliferation, and egress to the circulation of human AML cells are elastase dependent in NOD/SCID chimeric mice“. Blood 106, Nr. 6 (15.09.2005): 2120–27. http://dx.doi.org/10.1182/blood-2004-12-4969.
Der volle Inhalt der QuelleDissertationen zum Thema "Motility of leukemia cells"
Renaudin, Xavier. „Rôle de FANCA dans la régulation de la neddylation de protéines membranaires“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112187.
Der volle Inhalt der QuelleThe aim of this thesis was to find new substrates of the E3-ubiquitin ligase activity of theFANC Core complex, mutated in the rare genetic disorder Fanconi Anemia. This disease ischaracterized by bone marrow failure, developmental abnormalities and predisposition tocancer. Eight of the 16 known FANC proteins participate in the FANCcore nuclear complex,which has E3 ubiquitin-ligase activity and monoubiquitinates FANCD2 and FANCI inresponse to replication stress.In this thesis, I used mass spectrometry to compare cellular extracts from FANC Corecomplex deficient FA-A and FA-C cells to their ectopically corrected counterparts after agenotoxic stress.FANCD2 and FANCI appear to be the only true direct targets of the FANCcore complex.However, I also identified other proteins that undergo post-translational modifications throughFANCA- or FANCC-specific direct or indirect mechanisms that are independent of theFANCcore complex. The majority of these potential FANCA or FANCC target proteinslocalize to the cell membrane.Finally, I demonstrated that (a) the chemokine receptor CXCR5 is a neddylated protein; (b)FANCA, surprisingly, appears to modulate CXCR5 neddylation through a currently unknownmechanism; (c) CXCR5 neddylation is involved in the targeting of this receptor to the cellmembrane; and (d) CXCR5 neddylation stimulates cell migration/motility.I also confirmed that the role of FANCA in neddylation is not restrict to CXCR5 but also to,at least, one other protein, APLP2.My work has uncovered a new signaling pathway that is potentially involved in the rarehuman syndrome Fanconi Anemia and in cell motility and has highlighted a potential newfunction for the FANCA protein independant of the FANC Core complex and of a genotoxicstress
Smrčková, Zuzana. „Motilita leukemických buněk analyzovaná nekoherentním holografickým kvantitativním zobrazováním fáze“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444984.
Der volle Inhalt der QuelleZhang, Lu [Verfasser]. „Immunogenicity of leukemia stem cells in acute myeloid leukemia / Lu Zhang“. Ulm : Universität Ulm. Medizinische Fakultät, 2012. http://d-nb.info/1020022574/34.
Der volle Inhalt der QuelleBai, Limiao, und 白利苗. „In silico simulation of actin-based motility“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B46429116.
Der volle Inhalt der QuelleSuck, Garnet, Yeh Ching Linn und Torsten Tonn. „Natural Killer Cells for Therapy of Leukemia“. Karger, 2016. https://tud.qucosa.de/id/qucosa%3A71644.
Der volle Inhalt der QuelleBirkenmeier, Gerd, Nasr Y. A. Hemdan, Susanne Kurz, Marina Bigl, Philipp Pieroh, Tewodros Debebe, Martin Buchold, Rene Thieme, Gunnar Wichmann und Faramarz Dehghani. „Ethyl pyruvate combats human leukemia cells but spares normal blood cells“. Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-213853.
Der volle Inhalt der QuelleChoi, Mi-Yon. „P53 mediated cell motility in H1299 lung cancer cells“. VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/109.
Der volle Inhalt der QuellePeng, Cong. „Novel Therapeutic Targets for Ph+ Chromosome Leukemia and Its Leukemia Stem Cells: A Dissertation“. eScholarship@UMMS, 2010. https://escholarship.umassmed.edu/gsbs_diss/473.
Der volle Inhalt der QuelleChu, Peter P. „Immune-mediated apoptosis of chronic lymphocytic leukemia cells /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2001. http://wwwlib.umi.com/cr/ucsd/fullcit?p3031939.
Der volle Inhalt der QuelleSawai, Hirofumi. „Role for ceramide in apoptosis of leukemia cells“. Kyoto University, 1997. http://hdl.handle.net/2433/202164.
Der volle Inhalt der QuelleBücher zum Thema "Motility of leukemia cells"
Cobaleda, César, und Isidro Sánchez-García, Hrsg. Leukemia Stem Cells. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0810-4.
Der volle Inhalt der QuelleCell movement and cell behaviour. London: Allen & Unwin, 1986.
Den vollen Inhalt der Quelle findenLackie, J. M. Cell movement and cell behaviour. London: Allen & Unwin, 1986.
Den vollen Inhalt der Quelle findenZhang, Haojian, und Shaoguang Li, Hrsg. Leukemia Stem Cells in Hematologic Malignancies. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7342-8.
Der volle Inhalt der QuelleMurase, Mosatoshi. Dynamics of cellular motility. Chichester [England]: Wiley, 1992.
Den vollen Inhalt der Quelle findenMurase, Masatoshi. Dynamics of cellular motility. Chichester: J. Wiley & Sons, 1992.
Den vollen Inhalt der Quelle findenBray, Dennis. Cell movements: From molecules to motility. 2. Aufl. New York: Garland Pub., 2001.
Den vollen Inhalt der Quelle finden1947-, Jones Gareth E., Dunn Graham 1944- und Lackie J. M, Hrsg. Cell behaviour: Control and mechanism of motility. London: Portland on behalf of The Biochemical Society, 1999.
Den vollen Inhalt der Quelle findenM, Lackie J., Dunn Graham 1944- und Jones Gareth E. 1947-, Hrsg. Cell behaviour: Control and mechanism of motility. Princeton, NJ: Princeton University Press, 1999.
Den vollen Inhalt der Quelle findenPreston, Terence M. The cytoskeleton and cell motility. Glasgow: Blackie, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Motility of leukemia cells"
Wozniak, Marcin J., und Victoria J. Allan. „Carrier Motility“. In Trafficking Inside Cells, 233–53. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-93877-6_12.
Der volle Inhalt der QuelleRaff, Thorsten, und Monika Brüggemann. „Leukemia-Initiating Cells in Acute Lymphoblastic Leukemia“. In Cancer Stem Cells, 161–70. Hoboken, NJ: John Wiley & Sons, 2014. http://dx.doi.org/10.1002/9781118356203.ch12.
Der volle Inhalt der QuelleLane, Steven W., und David A. Williams. „Leukemia Stem Cells“. In Advances in Cancer Stem Cell Biology, 85–103. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0809-3_6.
Der volle Inhalt der QuelleMüschen, Markus. „Leukemia Stem Cells“. In Stem Cell Biology in Health and Disease, 281–94. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3040-5_13.
Der volle Inhalt der QuelleKonopleva, Marina, und Lina Han. „Leukemia Stem Cells“. In Encyclopedia of Cancer, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27841-9_7164-3.
Der volle Inhalt der QuelleKonopleva, Marina, und Lina Han. „Leukemia Stem Cells“. In Encyclopedia of Cancer, 2476–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_7164.
Der volle Inhalt der QuelleLynch, R. G. „Lymphoid Tumor Stem Cells and Their Regulation“. In Leukemia, 83–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69722-7_6.
Der volle Inhalt der QuelleKrivtsov, Andrei V., Yingzi Wang, Zhaohui Feng und Scott A. Armstrong. „Gene Expression Profiling of Leukemia Stem Cells“. In Leukemia, 231–46. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-418-6_11.
Der volle Inhalt der QuelleBonnet, Dominique. „Humanized Model to Study Leukemic Stem Cells“. In Leukemia, 247–62. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-418-6_12.
Der volle Inhalt der QuellePreston, Terence M., Conrad A. King und Jeremy S. Hyams. „Movement within Cells“. In The Cytoskeleton and Cell Motility, 70–86. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0393-7_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Motility of leukemia cells"
Marquerie, G., A. Duperray, G. Uzan und R. Berthier. „BIOSYNTHETIC PATHWAYS OF THE PLATELET FIBRINOGEN RECEPTOR IN HUMAN MEGAKARYOCYTES“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642954.
Der volle Inhalt der QuelleYunardi, Riky Tri, Agung Budianto Achmad und Qurrotul A'yun. „Imaging Motility Pattern Analyzer Based on Optical Flow on Mice Sperm Cells Motility“. In 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). IEEE, 2020. http://dx.doi.org/10.1109/eeccis49483.2020.9263448.
Der volle Inhalt der QuelleLiu, Zhuolin, Kazuhiro Kurokawa, Furu Zhang und Donald T. Miller. „Characterizing motility dynamics in human RPE cells“. In SPIE BiOS, herausgegeben von Fabrice Manns, Per G. Söderberg und Arthur Ho. SPIE, 2017. http://dx.doi.org/10.1117/12.2256144.
Der volle Inhalt der QuellePramanik, Rocky, Xia Sheng und Steven D. Mittelman. „Abstract 5173: Adipocytes attract leukemia cells“. In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5173.
Der volle Inhalt der QuelleXiao, Lifu, Xiaoying Liao, Lisheng Lin, Huifang Huang, Yuanzhong Chen und Buhong Li. „Autofluorescence characteristics of human leukemia cells and mononuclear cells“. In Photonics Asia 2010, herausgegeben von Qingming Luo, Ying Gu und Xingde Li. SPIE, 2010. http://dx.doi.org/10.1117/12.870282.
Der volle Inhalt der QuelleYu-Chiu Kao, Chau-Hwang Lee und Po-Ling Kuo. „Increased hydrostatic pressure enhances motility of lung cancer cells“. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944236.
Der volle Inhalt der QuelleBurgett, Monica E., Russell S. Tipps, Justin D. Lathia, Shideng Bao, Jeremy N. Rich und Candece L. Gladson. „Abstract 5288: Glioma stem cells stimulate the motility of brain endothelial cells: Identification of cell-adhesion molecules mediating motility and direct interaction“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-5288.
Der volle Inhalt der QuellePopescu, Gabriel, Kamran Badizadegan, Ramachandra R. Dasari und Michael S. Feld. „Motility of Live Cancer Cells Quantified by Fourier Phase Microscopy“. In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/ecbo.2005.md4.
Der volle Inhalt der QuelleLu, Ling-Chao, Cheng-Kai Xuan und Yue-Min Ding. „Dibutyl Phthalate Inhibits Motility and Neurite Outgrowth in Neuronal Cells“. In 2015 International Conference on Medicine and Biopharmaceutical. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814719810_0047.
Der volle Inhalt der QuelleKarl, Ilonka, und Juergen Bereiter-Hahn. „Scanning acoustic microscopy reveals distinct motility domains in living cells“. In 6th Annual International Symposium on NDE for Health Monitoring and Diagnostics, herausgegeben von Tribikram Kundu. SPIE, 2001. http://dx.doi.org/10.1117/12.434181.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Motility of leukemia cells"
Segall, Jeffrey E. Molecular Analysis of Motility in Metastatic Mammary Adenocarcinoma Cells. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada300010.
Der volle Inhalt der QuelleSegall, Jeffrey E. Molecular Analysis of Motility in Metastatic Mammary Adenocarcinoma Cells. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada361091.
Der volle Inhalt der QuelleSegall, Jeffrey E. Molecular Analysis of Motility in Metastatic Mammary Adenocarcinoma Cells. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada343279.
Der volle Inhalt der QuelleMuller-Sieburg, Christa. Myeloid-Biased Stem Cells as Potential Targets for Chronic Myelogeneous Leukemia. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada447669.
Der volle Inhalt der QuelleWang, Fang. Inhibition of Invasiveness and Motility of Human Breast Cancer Cells by Sphingosine-1-Phosphate. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada382431.
Der volle Inhalt der QuelleWang, Fang. Inhibition of Invasiveness and Motility of Human Breast Cancer Cells by Sphingosine-1-Phosphate. Fort Belvoir, VA: Defense Technical Information Center, August 1998. http://dx.doi.org/10.21236/ada359261.
Der volle Inhalt der QuelleVogel, Kristine S. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines. Fort Belvoir, VA: Defense Technical Information Center, Juni 2005. http://dx.doi.org/10.21236/ada439284.
Der volle Inhalt der QuelleVogel, Kristine S. Cell Motility and Invasiveness of Neurotibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2002. http://dx.doi.org/10.21236/ada411714.
Der volle Inhalt der QuelleVogel, Kristine S. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2003. http://dx.doi.org/10.21236/ada422403.
Der volle Inhalt der QuelleVogel, Kristine S. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines. Addendum. Fort Belvoir, VA: Defense Technical Information Center, Juni 2006. http://dx.doi.org/10.21236/ada458421.
Der volle Inhalt der Quelle