Auswahl der wissenschaftlichen Literatur zum Thema „Monoid“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Monoid" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Monoid"

1

Ceccherini-Silberstein, Tullio, und Michel Coornaert. „On surjunctive monoids“. International Journal of Algebra and Computation 25, Nr. 04 (21.05.2015): 567–606. http://dx.doi.org/10.1142/s0218196715500113.

Der volle Inhalt der Quelle
Annotation:
A monoid M is called surjunctive if every injective cellular automata with finite alphabet over M is surjective. We show that all finite monoids, all finitely generated commutative monoids, all cancellative commutative monoids, all residually finite monoids, all finitely generated linear monoids, and all cancellative one-sided amenable monoids are surjunctive. We also prove that every limit of marked surjunctive monoids is itself surjunctive. On the other hand, we show that the bicyclic monoid and, more generally, all monoids containing a submonoid isomorphic to the bicyclic monoid are non-surjunctive.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kim, Hwankoo, Myeong Og Kim und Young Soo Park. „Some Characterizations of Krull Monoids“. Algebra Colloquium 14, Nr. 03 (September 2007): 469–77. http://dx.doi.org/10.1142/s1005386707000429.

Der volle Inhalt der Quelle
Annotation:
In this paper, Kaplansky-type theorems are given to characterize GCD-monoids and valuation monoids. Also, (unique) r-factorable monoids are defined and it is shown that S is a Krull monoid if and only if S is a unique t-factorable (resp., w-factorable) monoid if and only if S is a t-factorable (resp., w-factorable) t-Prüfer monoid.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lee, Edmond. „Varieties generated by 2-testable monoids“. Studia Scientiarum Mathematicarum Hungarica 49, Nr. 3 (01.09.2012): 366–89. http://dx.doi.org/10.1556/sscmath.49.2012.3.1211.

Der volle Inhalt der Quelle
Annotation:
The smallest monoid containing a 2-testable semigroup is defined to be a 2-testable monoid. The well-known Brandt monoid B21 of order six is an example of a 2-testable monoid. The finite basis problem for 2-testable monoids was recently addressed and solved. The present article continues with the investigation by describing all monoid varieties generated by 2-testable monoids. It is shown that there are 28 such varieties, all of which are finitely generated and precisely 19 of which are finitely based. As a comparison, the sub-variety lattice of the monoid variety generated by the monoid B21 is examined. This lattice has infinite width, satisfies neither the ascending chain condition nor the descending chain condition, and contains non-finitely generated varieties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Polo, Harold. „Approximating length-based invariants in atomic Puiseux monoids“. Algebra and Discrete Mathematics 33, Nr. 1 (2022): 128–39. http://dx.doi.org/10.12958/adm1760.

Der volle Inhalt der Quelle
Annotation:
A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Huang, W., und J. Li. „Affinely spanned quasi-stochastic algebraic monoids“. International Journal of Algebra and Computation 27, Nr. 08 (Dezember 2017): 1061–72. http://dx.doi.org/10.1142/s0218196717500497.

Der volle Inhalt der Quelle
Annotation:
A linear algebraic monoid over an algebraically closed field [Formula: see text] of characteristic zero is called (row) quasi-stochastic if each row of each matrix element is of sum one. Any linear algebraic monoid over [Formula: see text] can be embedded as an algebraic submonoid of the maximum affinely spanned quasi-stochastic monoid of some degree [Formula: see text]. The affinely spanned quasi-stochastic algebraic monoids form a basic class of quasi-stochastic algebraic monoids. An initial study of structure of affinely spanned quasi-stochastic algebraic monoids is conducted. Among other things, it is proved that the Zariski closure of a parabolic subgroup of the unit group of an affinely spanned quasi-stochastic algebraic monoid is affinely spanned.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cain, Alan J., und António Malheiro. „Deciding conjugacy in sylvester monoids and other homogeneous monoids“. International Journal of Algebra and Computation 25, Nr. 05 (August 2015): 899–915. http://dx.doi.org/10.1142/s0218196715500241.

Der volle Inhalt der Quelle
Annotation:
We give a combinatorial characterization of conjugacy in the sylvester monoid, showing that conjugacy is decidable for this monoid. We then prove that conjugacy is undecidable in general for homogeneous monoids and even for multihomogeneous monoids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schwab, Emil Daniel. „Gauge Inverse Monoids“. Algebra Colloquium 27, Nr. 02 (07.05.2020): 181–92. http://dx.doi.org/10.1142/s1005386720000152.

Der volle Inhalt der Quelle
Annotation:
The paper introduces a class of inverse (sub)monoids which contains Jones–Lawson’s gauge inverse (sub)monoid. The aim is to give examples and the basic properties of these monoids. Jones–Lawson’s gauge inverse monoid, as an inverse submonoid of the polycyclic monoid, is the prototype in our development line. The generalization leads also to Meakin–Sapir type results involving bijections between special congruences and special wide inverse submonoids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cain, Alan J., António Malheiro und Fábio M. Silva. „The monoids of the patience sorting algorithm“. International Journal of Algebra and Computation 29, Nr. 01 (Februar 2019): 85–125. http://dx.doi.org/10.1142/s0218196718500649.

Der volle Inhalt der Quelle
Annotation:
The left patience sorting ([Formula: see text][Formula: see text]PS) monoid, also known in the literature as the Bell monoid, and the right patient sorting ([Formula: see text]PS) monoid are introduced by defining certain congruences on words. Such congruences are constructed using insertion algorithms based on the concept of decreasing subsequences. Presentations for these monoids are given. Each finite-rank [Formula: see text]PS monoid is shown to have polynomial growth and to satisfy a nontrivial identity (dependent on its rank), while the infinite rank [Formula: see text]PS monoid does not satisfy any nontrivial identity. Each [Formula: see text][Formula: see text]PS monoid of finite rank has exponential growth and does not satisfy any nontrivial identity. The complexity of the insertion algorithms is discussed. [Formula: see text]PS monoids of finite rank are shown to be automatic and to have recursive complete presentations. When the rank is [Formula: see text] or [Formula: see text], they are also biautomatic. [Formula: see text][Formula: see text]PS monoids of finite rank are shown to have finite complete presentations and to be biautomatic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Behrisch, Mike, und Edith Vargas-García. „Centralising Monoids with Low-Arity Witnesses on a Four-Element Set“. Symmetry 13, Nr. 8 (11.08.2021): 1471. http://dx.doi.org/10.3390/sym13081471.

Der volle Inhalt der Quelle
Annotation:
As part of a project to identify all maximal centralising monoids on a four-element set, we determine all centralising monoids witnessed by unary or by idempotent binary operations on a four-element set. Moreover, we show that every centralising monoid on a set with at least four elements witnessed by the Mal’cev operation of a Boolean group operation is always a maximal centralising monoid, i.e., a co-atom below the full transformation monoid. On the other hand, we also prove that centralising monoids witnessed by certain types of permutations or retractive operations can never be maximal.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

GABBAY, MURDOCH J., und PETER H. KROPHOLLER. „Imaginary groups: lazy monoids and reversible computation“. Mathematical Structures in Computer Science 23, Nr. 5 (15.05.2013): 1002–31. http://dx.doi.org/10.1017/s0960129512000849.

Der volle Inhalt der Quelle
Annotation:
We use constructions in monoid and group theory to exhibit an adjunction between the category of partially ordered monoids and lazy monoid homomorphisms and the category of partially ordered groups and group homomorphisms such that the unit of the adjunction is injective. We also prove a similar result for sets acted on by monoids and groups.We introduce the new notion of a lazy homomorphism for a function f between partially ordered monoids such that f(m ○ m′) ≤ f(m) ○ f(m′).Every monoid can be endowed with the discrete partial ordering (m ≤ m′ if and only if m=m′), so our constructions provide a way of embedding monoids into groups. A simple counterexample (the two-element monoid with a non-trivial idempotent) and some calculations show that one can never hope for such an embedding to be a monoid homomorphism, so the price paid for injecting a monoid into a group is that we must weaken the notion of a homomorphism to this new notion of a lazy homomorphism.The computational significance of this is that a monoid is an abstract model of computation – or at least of ‘operations’ – and, similarly, a group models reversible computations/operations. With this reading, the adjunction with its injective unit gives a systematic high-level way of faithfully translating an irreversible system into a ‘lazy’ reversible one.Informally, but perhaps informatively, we can describe this work as follows: we give an abstract analysis of how we can sensibly add ‘undo’ (in the sense of ‘control-Z’).
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Monoid"

1

Render, Elaine. „Rational monoid and semigroup automata“. Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/rational-monoid-and-semigroup-automata(0aff0c17-b6f9-4bc8-95d1-ff98da059d42).html.

Der volle Inhalt der Quelle
Annotation:
We consider a natural extension to the definition of M-automata which allows the automaton to make use of more of the structure of the monoid M, and by removing the reliance on an identity element, allows the definition of S-automata for S an arbitrary semigroup. In the case of monoids, the resulting automata are equivalent to valence automata with rational target sets which arise in the theory of regulated rewriting. We focus on the polycyclic monoids, and show that for polycyclic monoids of rank 2 or more they accept precisely the context-free languages. The case of the bicyclic monoid is also considered. In the process we prove a number of interesting results about rational subsets in polycyclic monoids; as a consequence we prove the decidability of the rational subset membership problem, and the closure of the class of rational subsets under intersection and complement. In the case of semigroups, we consider the important class of completely simple and completely 0-simple semigroups, obtaining a complete characterisation of the classes of languages corresponding to such semigroups, in terms of their maximal subgroups. In the process, we obtain a number of interesting results about rational subsets of Rees matrix semigroups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cevik, Ahmet Sinan. „Minimality of group and monoid presentations“. Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Salt, Brittney M. „MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS“. CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/31.

Der volle Inhalt der Quelle
Annotation:
This paper determines whether monoid rings with the two-generator property have the strong two-generator property. Dedekind domains have both the two-generator and strong two-generator properties. How common is this? Two cases are considered here: the zero-dimensional case and the one-dimensional case for monoid rings. Each case is looked at to determine if monoid rings that are not PIRs but are two-generated have the strong two-generator property. Full results are given in the zero-dimensional case, however only partial results have been found for the one-dimensional case.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lima, Lucinda Maria de Carvalho. „The local automorphism monoid of an independence algebra“. Thesis, University of York, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358341.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Catarino, Paula Maria Machado Cruz. „The monoid of orientation-preserving mappings on a chain“. Thesis, University of Essex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266839.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Oltmanns, Helga. „Homological classification of monoids by projectivities of right acts“. [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960378634.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ramasu, Pako. „Internal monoid actions in a cartesian closed category and higher-dimensional group automorphisms“. Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20248.

Der volle Inhalt der Quelle
Annotation:
The notion of cat¹-group which was introduced by Loday is equivalent to the notions of crossed module and of internal category in the category of groups. This notion of cat¹-groups and their morphisms admits natural generalization to catⁿ-groups, which give rise to n-fold categories in the category of groups. There is also a characterization of catⁿ-groups in terms of crossed n-cubes which was given by Ellis and Steiner. The category Catⁿ (Groups) of internal n-fold categories in the category of groups is a cartesian closed category, however given an object X in Catⁿ (Groups), calculating corresponding action representing object Aut (X) directly would require an enormous calculations. The main purpose of the thesis is to describe that object avoiding such calculations as much as possible. The main tool used in the thesis, apart from the theory of cartesian closed categories, is Loday's theory of catⁿ-groups. We de ne a catⁿ-group X as an additive Mₙ-group X , and then construct the corresponding Aut (X), where Mₙ is a monoid. Since the category of catⁿ-groups is equivalent to Catⁿ (Groups) and since the cartesian closed category Sets Mₙ of Mₙ-sets is much easier to handle than the cartesian closed category of n-fold categories, we shall work just with catⁿ-groups. To assert that, Aut (X) is an action representing object in Sets Mₙ , is to as- sert that, there is a canonical bijection between B-actions of catⁿ-group B on X and the internal group homomorphism B --> Aut (X). Thus, we confirm the construction of Aut (X) by establishing that bijection. Finally, as one of the results of this work, we give the comparison between our cat¹-group Aut (X) and Norrie's actor crossed module (D (G;Z) ;Aut (Z;G;p) w) of a crossed module (Z;G;p) in dimension one.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Duchamp, Gérard. „Algorithmes sur les polynomes en variables non commutatives“. Paris 7, 1987. http://www.theses.fr/1987PA077069.

Der volle Inhalt der Quelle
Annotation:
Etude des monoides libres et de leurs algebres. Presentation de nouvelles caracterisations des bisections reconnaissables; de la caracterisation des mots pouvant appartenir au support d'un polynome de lie et de l'etude de quelques proprietes algebriques de polynomes en variables partiallement commutatives. Etude du treillis des congruences regulieres sur le monoide bicyclique
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

East, James Phillip Hinton. „On Monoids Related to Braid Groups and Transformation Semigroups“. School of Mathematics and Statistics, 2006. http://hdl.handle.net/2123/2438.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

East, James Phillip Hinton. „On Monoids Related to Braid Groups and Transformation Semigroups“. Thesis, The University of Sydney, 2005. http://hdl.handle.net/2123/2438.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Monoid"

1

Debré, P., und P. Debré. Jacques Monod. Paris: Flammarion, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Phate monoi. Athēna: Kedros, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Renner, Lex Ellery. Linear algebraic monoids. Berlin: Springer, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Putcha, Mohan S. Linear algebraic monoids. Cambridge [England]: Cambridge University Press, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Monoi: Paradise imagined. Milan: Skira, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Monkie. Rotterdam: Lemniscaat, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Brusse, Jacques. Ambroise Monod, le Recup'Art. [Paris]: Ereme, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Badawi, Ayman, und Jim Coykendall, Hrsg. Rings, Monoids and Module Theory. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-8422-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Steinberg, Benjamin. Representation Theory of Finite Monoids. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43932-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Théodore Monod: Archives d'une vie. Paris: Muséum national d'histoire naturelle, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Monoid"

1

Bruns, Winfried, und Joseph Gubeladze. „Monoid algebras“. In Springer Monographs in Mathematics, 123–63. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b105283_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Akin, Ethan. „Monoid Actions“. In Recurrence in Topological Dynamics, 11–22. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-2668-8_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Duplij, Steven, Steven Duplij, Paulius Miškinis, Steven Duplij, Allen Parks, Cosmas Zachos, Artur Sergyeyev et al. „Free Monoid“. In Concise Encyclopedia of Supersymmetry, 155. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lozano, Yolanda, Steven Duplij, Malte Henkel, Malte Henkel, Euro Spallucci, Steven Duplij, Malte Henkel et al. „Semigroup (Monoid)“. In Concise Encyclopedia of Supersymmetry, 365. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_484.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Johansen, Pål Hermunn, Magnus Løberg und Ragni Piene. „Monoid Hypersurfaces“. In Geometric Modeling and Algebraic Geometry, 55–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72185-7_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hunt, John. „Monoid Pattern“. In Scala Design Patterns, 297–300. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02192-8_38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Colcombet, Thomas, Sam van Gool und Rémi Morvan. „First-order separation over countable ordinals“. In Lecture Notes in Computer Science, 264–84. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99253-8_14.

Der volle Inhalt der Quelle
Annotation:
AbstractWe show that the existence of a first-order formula separating two monadic second order formulas over countable ordinal words is decidable. This extends the work of Henckell and Almeida on finite words, and of Place and Zeitoun on $$\omega $$ ω -words. For this, we develop the algebraic concept of monoid (resp. $$\omega $$ ω -semigroup, resp. ordinal monoid) with aperiodic merge, an extension of monoids (resp. $$\omega $$ ω -semigroup, resp. ordinal monoid) that explicitly includes a new operation capturing the loss of precision induced by first-order indistinguishability. We also show the computability of FO-pointlike sets, and the decidability of the covering problem for first-order logic on countable ordinal words.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dehornoy, Patrick. „The Geometry Monoid“. In Braids and Self-Distributivity, 285–330. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8442-6_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Czaja, Ludwik. „Monoid of Processes“. In Cause-Effect Structures, 97–103. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20461-7_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Duplij, Steven, Joshua Feinberg, Moshe Moshe, Soon-Tae Hong, Omer Faruk Dayi, Omer Faruk Dayi, Francois Gieres et al. „Bicyclic Semigroup (Monoid)“. In Concise Encyclopedia of Supersymmetry, 57. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_61.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Monoid"

1

DELGADO, MANUEL, und VíTOR H. FERNANDES. „ABELIAN KERNELS, SOLVABLE MONOIDS AND THE ABELIAN KERNEL LENGTH OF A FINITE MONOID“. In Proceedings of the Workshop. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702616_0005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rosales, José Carlos, Pedro A. García-Sánchez und Juan Ignacio García-García. „How to check if a finitely generated commutative monoid is a principal ideal commutative monoid“. In the 2000 international symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/345542.345655.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Andrade, Antonio, und Tariq Shah. „Ascending chains of monoid and encoding“. In XXXI Simpósio Brasileiro de Telecomunicações. Sociedade Brasileira de Telecomunicações, 2013. http://dx.doi.org/10.14209/sbrt.2013.159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vemuri, Nageswara Rao, und Balasubramaniam Jayaram. „Homomorphisms on the monoid of fuzzy implications“. In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622436.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Andrade, Antonio, und Tariq Shah. „Ascending chain of monoid rings and encoding“. In XXIX Simpósio Brasileiro de Telecomunicações. Sociedade Brasileira de Telecomunicações, 2011. http://dx.doi.org/10.14209/sbrt.2011.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MUNN, W. D. „ON MCALISTER'S MONOID AND ITS CONTRACTED ALGEBRA“. In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708700_0016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

OTTO, FRIEDRICH. „RELATIVE MONOID PRESENTATIONS AND FINITE DERIVATION TYPE“. In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708700_0017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ateş, Firat, Eylem G. Karpuz, A. Sinan Çevik, Theodore E. Simos, George Psihoyios, Ch Tsitouras und Zacharias Anastassi. „The Efficiency of the Semi-Direct Products of Free Abelian Monoid with Rank n by the Infinite Cyclic Monoid“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636728.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Madlener, Klaus, und Birgit Reinert. „Computing Gröbner bases in monoid and group rings“. In the 1993 international symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/164081.164139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Singh, Shubh Narayan, und K. V. Krishna. „L-Primitive Words in Submonoids of a Free Monoid“. In International Conference on Recent Advances in Mathematics, Statistics and Computer Science 2015. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814704830_0029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Monoid"

1

Raychev, Nikolay. Hyper-n-Dimensional Neural Network Model with Desargues Monoids. Web of Open Science, April 2020. http://dx.doi.org/10.37686/emj.v1i1.28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wayland, B. B. Catalytic hydrogenation of carbon monoxide. Office of Scientific and Technical Information (OSTI), Dezember 1992. http://dx.doi.org/10.2172/5260923.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sawruk, Nicholas W. Optically Pumped Carbon Monoxide Cascade Laser. Fort Belvoir, VA: Defense Technical Information Center, Juni 2005. http://dx.doi.org/10.21236/ada437976.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Geoffroy, G. L. Mechanistic studies of carbon monoxide reduction. Office of Scientific and Technical Information (OSTI), Juni 1990. http://dx.doi.org/10.2172/6178880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Krause, Travis R., Joseph G. Sebranek und Mark S. Honeyman. Carbon Monoxide Packaging for Fresh Pork. Ames (Iowa): Iowa State University, Januar 2004. http://dx.doi.org/10.31274/ans_air-180814-70.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pitts, William M. Carbon monoxide production in compartment fires:. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5568.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Persily, Andrew K. Carbon monoxide dispersion in residential buildings:. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5906.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Springston, Stephen. Carbon Monoxide Analyzer (CO-ANALYZER) Instrument Handbook. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1495422.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Biraud, S. CO (Carbon Monoxide Mixing Ratio System) Handbook. Office of Scientific and Technical Information (OSTI), Februar 2011. http://dx.doi.org/10.2172/1019542.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Linteris, Gregory T., Marc D. Rumminger und Valeri Babushok. Premixed carbon monoxide-nitrous oxide-hydrogen flames :. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie