Auswahl der wissenschaftlichen Literatur zum Thema „Monoclonal antibodies“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Monoclonal antibodies" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Monoclonal antibodies":

1

Rieger, Paula Trahan. „Monoclonal Antibodies“. American Journal of Nursing 87, Nr. 4 (April 1987): 469. http://dx.doi.org/10.2307/3470440.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kosmas, C., H. Kalofonos und A. A. Epenetos. „Monoclonal Antibodies“. Drugs 38, Nr. 5 (November 1989): 645–57. http://dx.doi.org/10.2165/00003495-198938050-00001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

&NA;. „Monoclonal antibodies“. Reactions Weekly &NA;, Nr. 1293 (März 2010): 36. http://dx.doi.org/10.2165/00128415-201012930-00100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

&NA;. „Monoclonal Antibodies“. Journal of Pediatric Hematology/Oncology 25, Nr. 4 (April 2003): S5—S6. http://dx.doi.org/10.1097/00043426-200304000-00025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

&NA;. „Monoclonal Antibodies“. Journal of Pediatric Hematology/Oncology 25, Nr. 4 (April 2003): S17—S18. http://dx.doi.org/10.1097/00043426-200304000-00036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Anderson, Philip O. „Monoclonal Antibodies“. Breastfeeding Medicine 11, Nr. 3 (April 2016): 100–101. http://dx.doi.org/10.1089/bfm.2016.0026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nowak, Thomas P. „Monoclonal Antibodies“. American Journal of Clinical Oncology 10, Nr. 4 (August 1987): 278–80. http://dx.doi.org/10.1097/00000421-198708000-00002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ghobrial, Rafik M., Ronald W. Busuttil und Jerzy W. Kupiec-Weglinski. „Monoclonal antibodies“. Current Opinion in Organ Transplantation 2, Nr. 1 (Oktober 1997): 82–88. http://dx.doi.org/10.1097/00075200-199710000-00015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rosen, Steven T., Elyse A. Lambiase, Yixing Ma, James A. Radosevich und Alan L. Epstein. „Monoclonal antibodies“. Postgraduate Medicine 77, Nr. 4 (März 1985): 129–34. http://dx.doi.org/10.1080/00325481.1985.11698922.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rabin, Brace S. „Monoclonal antibodies“. Postgraduate Medicine 79, Nr. 1 (Januar 1986): 293–303. http://dx.doi.org/10.1080/00325481.1986.11699254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Monoclonal antibodies":

1

Austin, Eric B. „Human monoclonal antibodies“. Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Plumpton, Christopher. „Monoclonal antibodies against phytochrome“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358677.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Benjamin, Richard John. „Tolerance induction with monoclonal antibodies“. Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253988.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Qin, Shi-Xin. „Transplantation tolerance with monoclonal antibodies“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305697.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Heron, Andrew David. „The stability of monoclonal antibodies“. Thesis, University of Glasgow, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252169.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Isaacs, John Dudley. „Improving serotherapy with monoclonal antibodies“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Paudel, Subhash. „Shear thinning in monoclonal antibodies“. Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32833.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Master of Science
Department of Physics
Jeremy D. Schmit
Antibodies are large Y-shaped proteins which are used by immune system to identify and neutralize pathogens. Monoclonal antibody therapy is used to treat different patient conditions. There are problems associated with the manufacturability and deliverability of mAb solutions due to the viscous nature of the protein. The viscosity of antibody solutions increases with the increase in concentration and decreases with applied shear. We want to know why these behaviours are seen and to address this problem we have developed a theory describing the rapid viscosity increase with increasing concentration. We use the polymer theory to explain this behaviour. Here antibodies are treated as polymers. The length of the polymer depend on the aggregation. The reptation time increases approximately as the cubic power of size of aggregate (N³ ). We see the shear thinning behaviour is dependent on the Ab-Ab binding energy and find the relationship between the size of the aggregate and the binding energy. We find aggregate size and morphology using several models for Ab-Ab interaction sites. We use the head to head binding (fAb-fAb binding) model to describe aggregation state in our viscosity theory. The size of the aggregate and hence the reptation time is captured by the binding energy. When the binding energy increases the zero shear viscosity increases and the reptation time decreases. Likewise when the binding energy decreases the zero shear viscosity decreases and the reptation time increases. We have yet to find the correct exponents for the shear thinning behaviour of different mAbs which would be our future work.
8

Ueda, Yasuji. „MONOCLONAL ANTIBODIES TO CHICK CRYSTALLINS“. 京都大学 (Kyoto University), 1989. http://hdl.handle.net/2433/86412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pathan, N. „Catalytic monoclonal antibodies: a review“. Thesis(M.Phil.), CSIR-National Chemical Laboratory, Pune, 1990. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Alexandrovich, Susan K. „Characterization of monoclonal antibodies against digoxin /“. Online version of thesis, 1987. http://hdl.handle.net/1850/10681.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Monoclonal antibodies":

1

Ossipow, Vincent, und Nicolas Fischer, Hrsg. Monoclonal Antibodies. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-992-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Albitar, Maher, Hrsg. Monoclonal Antibodies. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-323-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Peters, Johann Hinrich, und Horst Baumgarten, Hrsg. Monoclonal Antibodies. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Peter, Beverley, Hrsg. Monoclonal antibodies. Edinburgh: Churchill Livingstone, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

JoAnn, Edwards-Moulds, und Masouredis Serafeim P, Hrsg. Monoclonal antibodies. Arlington, Va: American Association of Blood Banks, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

L, Beverley Peter C., Hrsg. Monoclonal antibodies. Edinburgh: Churchill Livingstone, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

P, Weizer William, Martineau William D und Freedonia Group, Hrsg. Monoclonal antibodies. Cleveland, Ohio: Freedonia Group, Inc., 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Borrebaeck, Carl A. K., und James W. Larrick, Hrsg. Therapeutic Monoclonal Antibodies. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-11894-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Steinitz, Michael, Hrsg. Human Monoclonal Antibodies. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-586-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

An, Zhiqiang, Hrsg. Therapeutic Monoclonal Antibodies. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470485408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Monoclonal antibodies":

1

Peters, J. H., und D. Baron. „Introduction“. In Monoclonal Antibodies, 1–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Peters, J. H., M. Schulze, M. Grol, S. Schiefer, H. Baumgarten, J. Endl, H. Xu et al. „Demonstration of Monoclonal Antibodies“. In Monoclonal Antibodies, 316–461. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baron, D. „Safety Precautions at Work“. In Monoclonal Antibodies, 463–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Peters, Johann Hinrich, und Horst Baumgarten. „Appendix“. In Monoclonal Antibodies, 466–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wiggenhauser, A., J. H. Peters und H. Baumgarten. „Preconditions for Hybridoma Technology“. In Monoclonal Antibodies, 18–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Baumgarten, H., M. Schulze, J. H. Peters und T. Hebell. „Immunization“. In Monoclonal Antibodies, 39–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wiggenhauser, A., J. H. Peters, H. Baumgarten und A. Borgya. „Taking Blood and Isolating Cells“. In Monoclonal Antibodies, 71–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Peters, J. H., E. Debus, H. Baumgarten, R. Würzner, M. Schulze und Helga Gerlach. „Cell Culture“. In Monoclonal Antibodies, 88–136. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Baron, D., J. H. Peters, R. K. H. Gieseler, S. Lenzner, H. Baumgarten, R. Würzner, B. Goller und Th Werfel. „Production of Hybridomas“. In Monoclonal Antibodies, 137–222. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Baumgarten, H., R. Franze, J. H. Peters, A. Borgya, D. Baron, E. Debus und M. Kubbies. „Mass Production of Monoclonal Antibodies“. In Monoclonal Antibodies, 223–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74532-4_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Monoclonal antibodies":

1

Kiefel, V., S. Santoso und C. Mueller-Eckhardt. „ANALYSIS OF PLATELET REACTIVE ANTIBODIES USING MONOCLONAL ANTIBODIES“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643929.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The characterization of platelet reactive alloantibodies and autoantibodies is mandatory for the diagnosis of posttransfusion purpura, neonatal alloimmune thrombocytopenia, autoimmune thrombocytopenia and for the selection of platelet donors prior to platelet transfusions in immunized polytransfused patients. The platelet immunofluorescence test is suitable for the detection of platelet reactive antibodies. In many cases, however, mixtures containing different platelet reactive antibodies have to be dissected.In order to analyze these sera, we have developed a novel enzyme immunoassay based upon monoclonal antibody specific immobilization of platelet antigens (MAIPA). In brief, platelets are incubated simultaneously with the (human) serum to be investigated and a monoclonal (mouse) antibody directed against an epitope on the same platelet membrane glycoprotein (GP). Platelets are then washed and solubilized in TRIS buffered saline containing NP40. The lysed platelets are then pipetted into the wells of microtiter plates, coated with goat anti mouse IgG where mouse anti GP-complexes are immobilized. Human platelet reactive antibodies on the same GP are detected using enzyme labelled goat anti human IgG, IgM, or IgA, respectively. Using mab Gi5, mab FMC25, mab w6.32 directed against epitopes on the glycoprotein complex IIb/IIIa, glycoprotein Ib and HLA class I molecule, respectively, and a panel of typed platelet donors, even sera containing different platelet reactive antibodies are readily analyzed. Results of experiments with platelet specific alloantibodies (anti P1A1, anti P1A2 and anti Bak(a)), autoantibodies (against the GP Ilb/IIIa complex and GP Ib) and a drug dependent antibody show that this assay allows to discriminate all these different platelet reactive antibodies.
2

Sun, Yanjie, Zhuoyun Wan und Zixiao Zhang. „Therapeutic Monoclonal Antibodies: Clinical Applications“. In International Conference on Biotechnology and Biomedicine. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0012020800003633.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yang, Wu, Li-ming Wang, Zhao Wei und Yuan Junlin. „Preliminary Production of Anti- Glufosinate Monoclonal Antibodies“. In 2007 1st International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/icbbe.2007.18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Young, Colin R., Alice Lee und Larry H. Stanker. „Detection of Campylobacter species using monoclonal antibodies“. In Photonics East (ISAM, VVDC, IEMB), herausgegeben von Yud-Ren Chen. SPIE, 1999. http://dx.doi.org/10.1117/12.335779.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ray, Jason C., Penelope Allen, Ann Bacsi, Julian Bosco, Luke Chen, Michael Eller, Lyndell Lim et al. „076 Inflammatory complications of CGRP monoclonal antibodies“. In ANZAN Annual Scientific Meeting 2021 Abstracts. BMJ Publishing Group Ltd, 2021. http://dx.doi.org/10.1136/bmjno-2021-anzan.76.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Metzelaar, M. J., H. K. Nieuwenhuis und J. J. Sixma. „DETECTION OF ACTIVATED PLATELETS WITH MONOCLONAL ANTIBODIES“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643829.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Blood tests reflecting in-vivo activation of platelets are potentially useful in evaluating patients with thrombotic diseases. Recently monoclonal antibodies have been described that react preferentially with activated platelets. We prepared an IgG2b antibody, designated RUU-AP 2.28, that reacted with a 53.000 MW protein that is located in a special subclass of platelet granules in unstimulated platelets and that is exposed on the surface of activated platelets. Increased numbers of platelets that expressed the 2.28 antigen on their surface were observed in patients undergoing cardiopulmonary bypass and in patients with acute deep venous thrombosis. The percentage of RUU-AP 2.28 positive platelets in the circulation was 3,9 ± 2.7 (SD)% in the controls, (n = 20), 24.6 ± 13.5% in patients after cardiopulmonary surgery (n = 10) and 8.5% in patients with acute deep venous thrombosis (n = 2).In order to detect also earlier stages of platelet activation, such as secretion-independent phenomena, we produced new monoclonal antibodies by fusing spleen cells from Balb/c mice, immunized with thrombin stimulated, paraformaldehyde fixed platelets, with Ag 8653 myeloma cells. As a screening assay we used an ELISA with freshly fixed platelets or fixed thrombin-activated platelets. We detected six monoclonal antibodies (RUU-AP 1-6) specific for thrombin-activated platelets. The results of the ELISA were confirmed by flow cytofluorometry.None of the antibodies inhibited platelet aggregation induced by ADP, collagen or ristocetin. Ascites of IgGl antibody RUU-AP 3 reacted with normal thrombin-activated platelets but did not react with thrombin-activated platelets from a patient with Glanzmann’s disease. In addition antibody RUU-AP 3 reacted with normal platelets stimulated with 1 pM of ADP. These data suggest that antibody RUU-AP 3 detects a secretion-independent conformational change in the platelet membrane glycoprotein IIb-IIIa complex.
7

Brown, Michael C., Ross Chambers, Dale V. Onisk, Tony R. Joaquim, Lewis J. Stafford, Klaus Lindpaintner, Daniel Keter und James W. Stave. „Abstract 4325: Monoclonal antibodies to transmembrane proteins.“ In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4325.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hessing, Martin, Joost C. M. Meijers, Jan A. van Mourik und Bonno N. Bouma. „MONOCLONAL ANTIBODIES TO HUMAN PROTEIN S AND C4b-BINDING PROTEIN“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Protein S (PS) circulates in plasma both free and in reversible association with the complement component C4b-binding protein (C4bp). Only free PS is functional as a cofactor for activated protein C (APC). Cleavage of PS by thrombin at a site near the r-carboxyglutamic acid domain is associated with a loss of cofactor activity. This may be a control mechanism for the anticoagulant activity of APC. These observations led us to investigate the role of C4bp and thrombin in the regulation of PS. Complex formation between purified PS and C4bp was studied in plasma and in a system with purified components. 125I-labeled PS was first incubated with either C4bp or citrated plasma and then subjected to polyacrylamide gelelectrophoresis in the absence of SDS. The formation of the C4bp-PS complex in plasma and in the purified system was demonstrated by autoradiography. Crossed immuno-electrophoresis using an antiserum against PS was performed in the presence of 8 mM EDTA. Human citrated plasma showed two precipitin peaks. Free PS migrated rapidly in the first dimension, whereas the C4bp-PS complex was just anodal to the application slot. The addition of C4bp to either plasma or purified PS resulted in the disappearance of the free PS peak and an increase of the slower migrating peak. The effect of purified C4bp on the PS-cofactor function of APC was studied in citrated plasma. The prolongation of the APTT induced by the addition of APC could be inhibited by the addition of increasing amounts of C4bp. Monoclonal antibodies to PS and C4bp were prepared and characterized. The monoclonal antibodies to either PS or C4bp did not block the complex formation between and PS, as was demonstrated by dot blotting of C4bp with 125I-PS and agarose gelelectrophoresis followed by Western blotting. Three out of 7 monoclonal antibodies to PS did not detect PS after thrombin cleavage on an immunoblot after non-reduced SDS polyacrylamide gelelectrophoresis. These 3 antibodies gave a significant shortening of the prolonged APTT induced by the addition of APC to normal plasma, indicating that these monoclonals inhibited the cofactor function of PS. The other 4 monoclonals to PS that did detect PS after thrombin cleavage on an immunoblot, gave only a minor inhibition of the PS cofactor function.
9

Chumak, N. S., und Y. I. Melnikova. „OBTAINING AND IMMUNOCHEMICAL TESTING OF APOFERRITIN“. In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-1-289-293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The process of direct binding of monoclonal antibodies to apoferritin immobilized on polystyrene, as well as the method of competitive interaction of monoclonal antibodies with apoferritin in solution, have been experimentally studied. It was found that the immobilization of apoferritin on a polystyrene surface leads to a change in the epitope structure of this protein and to the elimination of reactive epitopes of binding of monoclonal antibodies. The soluble form of apoferritin effectively binds to monoclonal antibodies in a competitive assay, which confirms the conformational nature of the clusters of determinants on the surface of apoferritin.
10

Clemetson, K. J., R. Weber und J. L. McGregor. „TOPOLOGY OF PLATELET GPIb INVESTIGATED BY LOCATION OF MONOCLONAL ANTIBODY EPITOPES“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643625.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A large number of monoclonal antibodies to platelet membrane glycoprotein lb (GPIb) have been described but for most of these the position of the epitope is not known. Since many of these influence platelet function, a better understanding of struc-ture-function relationships requires this knowledge. The position of the epitopes for the monoclonal antibodies API (Dr. T.J. Kunicki), AN51 and SZ-2 (Dr. C-G. Ruan), WM23 (Dr. M.C. Berndt) and PI were determined by analysis of proteolytic cleavage fragments of glycocalicin via affinity chromatography on the monoclonal antibodies coupled to Sepharose, elution with diethyl ami ne solution, separation on SDS-gel electrophoresis and detection by silver-staining. First, intact glycocalicin was examined and was found to bind to all monoclonals with the exception of PI. All monoclonals bound intact GPIb. WM23 bound a 70 kDa glycopeptide from the highly-glycosylated 90 kDa tryptic fragment of glycocalicin. API, AN51 and SZ-2 all bound to 45 kDa and 40 kDa, poorly glycosylated tryptic fragments. The 40 kDa fragment is derived from the 45 kDa fragment and has been shown to be the N-terminal region of GPIb. All these monoclonals have been shown to inhibit von Willebrand factor induced platelet agglutination. Platelets were treated with either elastase or calcium activated protease and monoclonal binding checked by immunofluorescence. The immunofluorescence with API, AN51 and SZ-2 was minimal compared to control platelets whereas that of PI remained as strong as the controls. This indicates that the epitope for PI lies on GPIb in a region other than glycocalicin and its absence from glycocalicin is not simply due to conformational changes in that fragment. Since PI inhibits platelet activation by thrombin and ADP it must act via conformational effects and not by blocking the thrombin receptor which lies on the 45 kDa region of glycocalicin. These results support a more complex role for GPIb in platelet activation.

Berichte der Organisationen zum Thema "Monoclonal antibodies":

1

Snyder, Christopher M., und Lawrence J. Wysocki. Dissecting Immunogenicity of Monoclonal Antibodies. Fort Belvoir, VA: Defense Technical Information Center, Juni 2002. http://dx.doi.org/10.21236/ada407659.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Snyder, Christopher M., und Lawrence J. Wysocki. Dissecting Immunogenicity of Monoclonal Antibodies. Fort Belvoir, VA: Defense Technical Information Center, Juni 2003. http://dx.doi.org/10.21236/ada417364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jaszczak, R. J. SPECT assay of radiolabeled monoclonal antibodies. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/7197646.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jaszczak, R. J. SPECT assay of radiolabeled monoclonal antibodies. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/7288347.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chia, John K. Polymyxin B(PMB)-Specific Monoclonal Antibodies. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada231817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ivy, John M. Production of Anti-Ferret IgA Antibodies; and production of monoclonal antibodies. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada279534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sato, J. D. Receptor Monoclonal Antibodies that Inhibit Tumor Angiogenesis. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada398146.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sato, J. D. Receptor Monoclonal Antibodies that Inhibit Tumor Angiogenesis. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada383129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Glassy, Mark C. Neutralizing Monoclonal Antibodies against Biological Toxins. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/adb176298.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jaszczak, Ronald, J. Final Progress Report: SPECT Assay of Radiolabeled Monoclonal Antibodies. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/886018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie