Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Molecular selectivity.

Zeitschriftenartikel zum Thema „Molecular selectivity“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Molecular selectivity" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Murray, Royce. "Chemical Sensors and Molecular Selectivity." Analytical Chemistry 66, no. 9 (1994): 505a. http://dx.doi.org/10.1021/ac00081a600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Somorjai, Gabor A, and Jeong Y Park. "Molecular Factors of Catalytic Selectivity." Angewandte Chemie International Edition 47, no. 48 (2008): 9212–28. http://dx.doi.org/10.1002/anie.200803181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Liu, Guangyang, Xiaodong Huang, Lingyun Li, et al. "Recent Advances and Perspectives of Molecularly Imprinted Polymer-Based Fluorescent Sensors in Food and Environment Analysis." Nanomaterials 9, no. 7 (2019): 1030. http://dx.doi.org/10.3390/nano9071030.

Der volle Inhalt der Quelle
Annotation:
Molecular imprinting technology (MIT), also known as molecular template technology, is a new technology involving material chemistry, polymer chemistry, biochemistry, and other multi-disciplinary approaches. This technology is used to realize the unique recognition ability of three-dimensional crosslinked polymers, called the molecularly imprinted polymers (MIPs). MIPs demonstrate a wide range of applicability, good plasticity, stability, and high selectivity, and their internal recognition sites can be selectively combined with template molecules to achieve selective recognition. A molecularl
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Candeago, Riccardo, Hanyu Wang, Manh-Thuong Nguyen, et al. "Molecular Insights into Redox-Active Polymer Interfaces: Solvation and Ion Valency Effects on Metal Oxyanion Selectivity." ECS Meeting Abstracts MA2024-01, no. 55 (2024): 2910. http://dx.doi.org/10.1149/ma2024-01552910mtgabs.

Der volle Inhalt der Quelle
Annotation:
Chemical separations are responsible for 10-15% of the world’s energy consumption. Minimizing energy and materials inputs in selective separations is imperative for a sustainable future. Ion-electrosorption mediated by redox-active metallopolymer interfaces has the unique advantage of selectively capturing and releasing metal oxyanions in a switchable manner by adjusting the applied potential, without any regenerants. Electrosorption addresses the need for selective separation approaches with low chemical and energy inputs. Previous studies on ferrocene metallopolymers have demonstrated the ro
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rauschenberg, Melanie, Eva-Corrina Fritz, Christian Schulz, Tobias Kaufmann, and Bart Jan Ravoo. "Molecular recognition of surface-immobilized carbohydrates by a synthetic lectin." Beilstein Journal of Organic Chemistry 10 (June 16, 2014): 1354–64. http://dx.doi.org/10.3762/bjoc.10.138.

Der volle Inhalt der Quelle
Annotation:
The molecular recognition of carbohydrates and proteins mediates a wide range of physiological processes and the development of synthetic carbohydrate receptors (“synthetic lectins”) constitutes a key advance in biomedical technology. In this article we report a synthetic lectin that selectively binds to carbohydrates immobilized in a molecular monolayer. Inspired by our previous work, we prepared a fluorescently labeled synthetic lectin consisting of a cyclic dimer of the tripeptide Cys-His-Cys, which forms spontaneously by air oxidation of the monomer. Amine-tethered derivatives of N-acetyln
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Farman, Nicolette, and Brigitte Bocchi. "Mineralocorticoid selectivity: Molecular and cellular aspects." Kidney International 57, no. 4 (2000): 1364–69. http://dx.doi.org/10.1046/j.1523-1755.2000.00976.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Comba, Peter. "Metal ion selectivity and molecular modeling." Coordination Chemistry Reviews 185-186 (May 1999): 81–98. http://dx.doi.org/10.1016/s0010-8545(98)00249-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Laskin, Julia, Alexander Laskin, Sergey A. Nizkorodov, et al. "Molecular Selectivity of Brown Carbon Chromophores." Environmental Science & Technology 48, no. 20 (2014): 12047–55. http://dx.doi.org/10.1021/es503432r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Epa, Kanishka, Christer B. Aakeröy, John Desper, Sundeep Rayat, Kusum Lata Chandra, and Aurora J. Cruz-Cabeza. "Controlling molecular tautomerism through supramolecular selectivity." Chemical Communications 49, no. 72 (2013): 7929. http://dx.doi.org/10.1039/c3cc43935f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Souverijns, Wim, Lieve Rombouts, Johan A. Martens, and Pierre A. Jacobs. "Molecular shape selectivity of EUO zeolites." Microporous Materials 4, no. 2-3 (1995): 123–30. http://dx.doi.org/10.1016/0927-6513(94)00091-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Selçuk, Berkay, Ismail Erol, Serdar Durdağı, and Ogün Adebali. "Evolutionary association of receptor-wide amino acids with G protein–coupling selectivity in aminergic GPCRs." Life Science Alliance 5, no. 10 (2022): e202201439. http://dx.doi.org/10.26508/lsa.202201439.

Der volle Inhalt der Quelle
Annotation:
G protein-coupled receptors (GPCRs) induce signal transduction pathways through coupling to four main subtypes of G proteins (Gs, Gi, Gq, and G12/13), selectively. However, G protein selective activation mechanisms and residual determinants in GPCRs have remained obscure. Herein, we performed extensive phylogenetic analysis and identified specifically conserved residues for the aminergic receptors having similar coupling profiles. By integrating our methodology of differential evolutionary conservation of G protein–specific amino acids with structural analyses, we identified specific activatio
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ge, Huizhen, Chunchao Tang, Yiting Pan, and Xiaojun Yao. "Theoretical Studies on Selectivity of HPK1/JAK1 Inhibitors by Molecular Dynamics Simulations and Free Energy Calculations." International Journal of Molecular Sciences 24, no. 3 (2023): 2649. http://dx.doi.org/10.3390/ijms24032649.

Der volle Inhalt der Quelle
Annotation:
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T cell receptor, which has been regarded as a potential target for immunotherapy. Yu et al. observed the off-target effect of the high-throughput screening HPK1 kinase inhibitor hits on JAK1 kinase. The off-target effect is usually due to the lack of specificity of the drug, resulting in toxic side effects. Therefore, exploring the mechanisms to selectively inhibit HPK1 is critical for developing effective and safe inhibitors. In this study, two indazole compounds as HPK1 inhibitors with different selectivity towards JAK1 were
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Zhang, Ji Shi, Zhe Wang, Jing Wen Xue, and Xin Zhu Li. "Cr-Substituted Mesoporous Aluminophosphate Molecular Sieve: Preparation, Characterization and Catalytic Activity in the Oxidation Reaction of Ethylbenzene." Advanced Materials Research 496 (March 2012): 285–89. http://dx.doi.org/10.4028/www.scientific.net/amr.496.285.

Der volle Inhalt der Quelle
Annotation:
Cr-substituted mesoporous aluminophosphate molecular sieve (Cr-MAP) was prepared and characterized. Cr-MAP is a typical mesoporous molecular sieve with long-range ordered structure, providing effective molecular sieve for fabricating acetophenone by selectively oxizing ethylbenzene with tertiary butyl hydro peroxide (TBHP). When the reaction is at 100 °C for 8 h, using chlorobenzene as solvent and TBHP as oxidant, ethylbenzene conversion, acetophenone selectivity and acetophenone yield reach 72.8 %, 85.4 %, and 62.2 %, respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kurata, Harley T., L. Revell Phillips, Thierry Rose, et al. "Molecular Basis of Inward Rectification." Journal of General Physiology 124, no. 5 (2004): 541–54. http://dx.doi.org/10.1085/jgp.200409159.

Der volle Inhalt der Quelle
Annotation:
Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity filter, can confer strong rectification. As these negative charges are moved higher (toward the selectivity filter), or lower (toward the cytoplasm), they preferentially enhance the potency of block by shor
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Sharma, Mahima, Palika Abayakoon, Ruwan Epa, et al. "Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis." ACS Central Science 7, no. 3 (2021): 476–87. http://dx.doi.org/10.1021/acscentsci.0c01285.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Nassimbeni, L. R. "Molecular recognition and selectivity in organic clathrates." Acta Crystallographica Section A Foundations of Crystallography 62, a1 (2006): s110. http://dx.doi.org/10.1107/s0108767306097807.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Smit, Berend, and Theo L. M. Maesen. "Towards a molecular understanding of shape selectivity." Nature 451, no. 7179 (2008): 671–78. http://dx.doi.org/10.1038/nature06552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Chen, Alexander N., and Sara E. Skrabalak. "Molecular-like selectivity emerges in nanocrystal chemistry." Dalton Transactions 49, no. 36 (2020): 12530–35. http://dx.doi.org/10.1039/d0dt01168a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Milo, Anat, Elizabeth N. Bess, and Matthew S. Sigman. "Interrogating selectivity in catalysis using molecular vibrations." Nature 507, no. 7491 (2014): 210–14. http://dx.doi.org/10.1038/nature13019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Huang, Shengxi, Xi Ling, Liangbo Liang, et al. "Molecular Selectivity of Graphene-Enhanced Raman Scattering." Nano Letters 15, no. 5 (2015): 2892–901. http://dx.doi.org/10.1021/nl5045988.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Lusti-Narasimhan, Manjula, André Chollet, Christine A. Power, Bernard Allet, Amanda E. I. Proudfoot, and Timothy N. C. Wells. "A Molecular Switch of Chemokine Receptor Selectivity." Journal of Biological Chemistry 271, no. 6 (1996): 3148–53. http://dx.doi.org/10.1074/jbc.271.6.3148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Conrad, Marcel P., Jörg Piontek, Dorothee Günzel, Michael Fromm, and Susanne M. Krug. "Molecular basis of claudin-17 anion selectivity." Cellular and Molecular Life Sciences 73, no. 1 (2015): 185–200. http://dx.doi.org/10.1007/s00018-015-1987-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Colombini, Marco. "The VDAC channel: Molecular basis for selectivity." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1863, no. 10 (2016): 2498–502. http://dx.doi.org/10.1016/j.bbamcr.2016.01.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Hu, Ye, and Jürgen Bajorath. "Exploring Target-Selectivity Patterns of Molecular Scaffolds." ACS Medicinal Chemistry Letters 1, no. 2 (2010): 54–58. http://dx.doi.org/10.1021/ml900024v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Farman, Nicolette. "Molecular and cellular determinants of mineralocorticoid selectivity." Current Opinion in Nephrology and Hypertension 8, no. 1 (1999): 45–51. http://dx.doi.org/10.1097/00041552-199901000-00008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Imoto, Keiji. "Ion channels: molecular basis of ion selectivity." FEBS Letters 325, no. 1-2 (1993): 100–103. http://dx.doi.org/10.1016/0014-5793(93)81422-v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Dietz, Nikolaus, Markus Huber, Isabel Sorg, et al. "Structural basis for selective AMPylation of Rac-subfamily GTPases by Bartonella effector protein 1 (Bep1)." Proceedings of the National Academy of Sciences 118, no. 12 (2021): e2023245118. http://dx.doi.org/10.1073/pnas.2023245118.

Der volle Inhalt der Quelle
Annotation:
Small GTPases of the Ras-homology (Rho) family are conserved molecular switches that control fundamental cellular activities in eukaryotic cells. As such, they are targeted by numerous bacterial toxins and effector proteins, which have been intensively investigated regarding their biochemical activities and discrete target spectra; however, the molecular mechanism of target selectivity has remained largely elusive. Here we report a bacterial effector protein that selectively targets members of the Rac subfamily in the Rho family of small GTPases but none in the closely related Cdc42 or RhoA su
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Charlton, James L., Guy L. Plourde та Glenn H. Penner. "Asymmetric induction in Diels–Alder reactions of α-alkoxyorthoquinodimethanes". Canadian Journal of Chemistry 67, № 6 (1989): 1010–14. http://dx.doi.org/10.1139/v89-153.

Der volle Inhalt der Quelle
Annotation:
It has been shown that dienophiles cycloadd selectively to one face of o-quinodimethanes (o-QDMs) bearing chiral α-alkoxy groups. The face selectivity (diastereoselectivity) increases for the series of chiral groups -OCH(Ph)CH3, -OCH(Ph)CH(CH3)2, and -OCH(Ph)C(CH3)3. A similar effect on the face selectivity of the Diels–Alder reactions of chiral alkoxy vinyl ethers for the same series of chiral groups has been noted previously by others. A mechanism has been proposed to explain the face selectivity in the cycloaddition reactions of the alkoxy o-QDMs. Abinitio molecular orbital calculations wit
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Li, Chunyan, Jingxiang Yuan, Chaozhan Wang, and Yinmao Wei. "Molecular bottlebrush polymer modified magnetic adsorbents with high physicochemical selectivity and unique shape selectivity." Journal of Chromatography A 1564 (August 2018): 16–24. http://dx.doi.org/10.1016/j.chroma.2018.06.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Liu, Xuanyan, Yidan Jing, Yuanyuan She, Jun Liu, Wenwei Hu, and Dulin Yin. "Bifunctional Oxidation Catalysis of New Titanium-Silicon Molecular Sieve (HTS-1) Based on the Reaction of Allyl Alcohol and Hydrogen Peroxide." Science of Advanced Materials 14, no. 6 (2022): 1144–49. http://dx.doi.org/10.1166/sam.2022.4321.

Der volle Inhalt der Quelle
Annotation:
The HTS-1 (Hollow Titanium silicalite molecular sieve) catalyst with bifunctional catalysis showed superior catalytic activity in the epoxidation of olefins and the oxidation of alcohols. The competitive oxidation law of enols in the HTS-1/H2O2 oxidation system was studied. The effects of various reaction conditions, such as the reaction temperature, solvent, catalyst type, and the amount of additive, were examined. The results indicated that the HTS-1 catalyst preferentially catalyzes AA epoxidation to produce glycidol (GLY) efficiently and selectively using polar proton solvent and proper te
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Rogne, Per, Marie Rosselin, Christin Grundström, Christian Hedberg, Uwe H. Sauer, and Magnus Wolf-Watz. "Molecular mechanism of ATP versus GTP selectivity of adenylate kinase." Proceedings of the National Academy of Sciences 115, no. 12 (2018): 3012–17. http://dx.doi.org/10.1073/pnas.1721508115.

Der volle Inhalt der Quelle
Annotation:
Enzymatic substrate selectivity is critical for the precise control of metabolic pathways. In cases where chemically related substrates are present inside cells, robust mechanisms of substrate selectivity are required. Here, we report the mechanism utilized for catalytic ATP versus GTP selectivity during adenylate kinase (Adk) -mediated phosphorylation of AMP. Using NMR spectroscopy we found that while Adk adopts a catalytically competent and closed structural state in complex with ATP, the enzyme is arrested in a catalytically inhibited and open state in complex with GTP. X-ray crystallograph
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Dores, Robert M., Richard L. Londraville, Jeremy Prokop, Perry Davis, Nathan Dewey, and Natalie Lesinski. "MOLECULAR EVOLUTION OF GPCRS: Melanocortin/melanocortin receptors." Journal of Molecular Endocrinology 52, no. 3 (2014): T29—T42. http://dx.doi.org/10.1530/jme-14-0050.

Der volle Inhalt der Quelle
Annotation:
The melanocortin receptors (MCRs) are a family of G protein-coupled receptors that are activated by melanocortin ligands derived from the proprotein, proopiomelanocortin (POMC). During the radiation of the gnathostomes, the five receptors have become functionally segregated (i.e. melanocortin 1 receptor (MC1R), pigmentation regulation; MC2R, glucocorticoid synthesis; MC3R and MC4R, energy homeostasis; and MC5R, exocrine gland physiology). A focus of this review is the role that ligand selectivity plays in the hypothalamus/pituitary/adrenal–interrenal (HPA–I) axis of teleosts and tetrapods as a
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Jiang, Shan, Kim E. Jelfs, Daniel Holden, et al. "Molecular Dynamics Simulations of Gas Selectivity in Amorphous Porous Molecular Solids." Journal of the American Chemical Society 135, no. 47 (2013): 17818–30. http://dx.doi.org/10.1021/ja407374k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Sun, Qing, Zhi Xiang Xu, Li Min Zhang, Lei Xu, and Jie Zhou. "The Recent Advance of Molecularly Imprinted on-Line Solid Phase Extraction and its Application in Sample Pretreatment - A Mini Review." Advanced Materials Research 415-417 (December 2011): 1799–805. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.1799.

Der volle Inhalt der Quelle
Annotation:
Solid phase extraction (SPE) is a sample pretreatment technique which is increasingly popular and widely used. However, most of the traditional SPE material has poor selectivity. Molecular imprinting is an emerging technology for the preparation of functionalized materials with molecular recognition ability. Using the imprinted polymers as new sorbent, a molecularly imprinted on-line solid phase extraction coupled with chromatography or other techniques has become one of the most interesting applications of MIP, which has not only the extraction efficiency of SPE but also the high selectivity
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Murata, Kazuyoshi, Kaoru Mitsuoka, Terahisa Hirai, et al. "Molecular basis of water selectivity on aquaporin-1." Kidney International 60, no. 2 (2001): 399. http://dx.doi.org/10.1046/j.1523-1755.2001.00821-5.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Aakeröy, Christer B., Tharanga K. Wijethunga, and John Desper. "Molecular electrostatic potential dependent selectivity of hydrogen bonding." New Journal of Chemistry 39, no. 2 (2015): 822–28. http://dx.doi.org/10.1039/c4nj01324g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Newcomb, Martin, and Pavel A. Simakov. "Lack of molecular selectivity in Gif-type oxidations." Tetrahedron Letters 39, no. 9 (1998): 965–66. http://dx.doi.org/10.1016/s0040-4039(97)10671-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Sardar, Vineet M., Debra L. Bautista, David J. Fischer, et al. "Molecular basis for lysophosphatidic acid receptor antagonist selectivity." Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1582, no. 1-3 (2002): 309–17. http://dx.doi.org/10.1016/s1388-1981(02)00185-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Wess, Jürgen. "Molecular Basis of Receptor/G-Protein-Coupling Selectivity." Pharmacology & Therapeutics 80, no. 3 (1998): 231–64. http://dx.doi.org/10.1016/s0163-7258(98)00030-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Cook, Ian, Ting Wang, and Thomas S. Leyh. "Sulfotransferase 1A1 Substrate Selectivity: A Molecular Clamp Mechanism." Biochemistry 54, no. 39 (2015): 6114–22. http://dx.doi.org/10.1021/acs.biochem.5b00406.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Yang, Yingkui, and Carroll M. Harmon. "Molecular determinants of ACTH receptor for ligand selectivity." Molecular and Cellular Endocrinology 503 (March 2020): 110688. http://dx.doi.org/10.1016/j.mce.2019.110688.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Park, Eul-Soo, Minji Kim та Jong-Shik Shin. "Molecular determinants for substrate selectivity of ω-transaminases". Applied Microbiology and Biotechnology 93, № 6 (2011): 2425–35. http://dx.doi.org/10.1007/s00253-011-3584-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Erlenbach, Isolde, and Jürgen Wess. "Molecular Basis of V2 Vasopressin Receptor/GsCoupling Selectivity." Journal of Biological Chemistry 273, no. 41 (1998): 26549–58. http://dx.doi.org/10.1074/jbc.273.41.26549.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Bartok, Adam, Gyorgy Panyi, Lourival Domingos Possani, and Zoltan Varga. "Molecular Determinants of Selectivity for Kv1.3 K+ Channels." Biophysical Journal 104, no. 2 (2013): 465a. http://dx.doi.org/10.1016/j.bpj.2012.11.2572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Bartos, Mariana, Diego Rayes, and Cecilia Bouzat. "Molecular Determinants of Pyrantel Selectivity in Nicotinic Receptors." Molecular Pharmacology 70, no. 4 (2006): 1307–18. http://dx.doi.org/10.1124/mol.106.026336.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Rao, Mukti S., and Bakul C. Dave. "Thermally-Regulated Molecular Selectivity of Organosilica Sol−Gels." Journal of the American Chemical Society 125, no. 39 (2003): 11826–27. http://dx.doi.org/10.1021/ja0352348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Cui, Wenqiang, Junlin Dong, Shiyu Wang, Horst Vogel, Rongfeng Zou, and Shuguang Yuan. "Molecular basis of ligand selectivity for melatonin receptors." RSC Advances 13, no. 7 (2023): 4422–30. http://dx.doi.org/10.1039/d2ra06693a.

Der volle Inhalt der Quelle
Annotation:
The sandwich structure in human melatonin receptors was disrupted. In MT1 this opened a gate for the water molecule from the bulk environment to fluctuate into the inner space. In MT2, the sandwich structure was stabilized by MEL during the whole MD simulations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Pomès, Régis. "Molecular Mechanisms of Ion Permeation, Selectivity, and Leakage." Biophysical Journal 114, no. 3 (2018): 7a. http://dx.doi.org/10.1016/j.bpj.2017.11.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Matamoros, Marcos, Sun Joo Lee, Shizhen Wang, and Colin G. Nichols. "Molecular Mechanisms of Ion Selectivity in Potassium Channels." Biophysical Journal 118, no. 3 (2020): 363a. http://dx.doi.org/10.1016/j.bpj.2019.11.2087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Li, Dan C., Colin G. Nichols, and Monica Sala-Rabanal. "Molecular Determinants of Substrate Selectivity in OCT3 (SLC22A3)." Biophysical Journal 108, no. 2 (2015): 461a. http://dx.doi.org/10.1016/j.bpj.2014.11.2516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!