Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Molecular modeling analysis.

Zeitschriftenartikel zum Thema „Molecular modeling analysis“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Molecular modeling analysis" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Hanai, Toshihiko. „Molecular Modeling for Quantitative Analysis of Molecular Interaction†“. Letters in Drug Design & Discovery 2, Nr. 3 (01.05.2005): 232–38. http://dx.doi.org/10.2174/1570180053765192.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kumawat, Renu, Vineet Sahula und Manoj S. Gaur. „Probabilistic modeling and analysis of molecular memory“. ACM Journal on Emerging Technologies in Computing Systems 11, Nr. 1 (06.10.2014): 1–16. http://dx.doi.org/10.1145/2629533.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gutiérrez, Alberto, Mert Atilhan und Santiago Aparicio. „Molecular Modeling Analysis of CO2Absorption by Glymes“. Journal of Physical Chemistry B 122, Nr. 6 (06.02.2018): 1948–57. http://dx.doi.org/10.1021/acs.jpcb.7b10276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Boyle, A. „Polymer chain packing analysis using molecular modeling“. Journal of Molecular Graphics 12, Nr. 3 (September 1994): 219–25. http://dx.doi.org/10.1016/0263-7855(94)80091-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chahibi, Youssef, Ian F. Akyildiz und Ilangko Balasingham. „Propagation Modeling and Analysis of Molecular Motors in Molecular Communication“. IEEE Transactions on NanoBioscience 15, Nr. 8 (Dezember 2016): 917–27. http://dx.doi.org/10.1109/tnb.2016.2620439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Banks, H. T., N. S. Luke und J. R. Samuels. „Viscoelasticity in polymers: Phenomenological to molecular mathematical modeling“. Numerical Methods for Partial Differential Equations 23, Nr. 4 (2007): 817–31. http://dx.doi.org/10.1002/num.20250.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Korendyasev, S. P., A. V. Firsova, D. M. Mordasov und M. M. Mordasov. „Modeling and Fractal Analysis of Molecular Film Structures“. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 23, Nr. 3 (2017): 527–34. http://dx.doi.org/10.17277/vestnik.2017.03.pp.527-534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Obiso, Jr., Richard J., David R. Bevan und Tracy D. Wilkins. „Molecular Modeling and Analysis of Fragilysin, theBacteroides fragilisToxin.“ Clinical Infectious Diseases 25, s2 (September 1997): S153—S155. http://dx.doi.org/10.1086/516240.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ferreira-Júnior, José Ribamar, Lucas Bleicher und Mario H. Barros. „Her2p molecular modeling, mutant analysis and intramitochondrial localization“. Fungal Genetics and Biology 60 (November 2013): 133–39. http://dx.doi.org/10.1016/j.fgb.2013.06.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Boonyapranai, Kongsak, Hsien-Yu Tsai, Miles Chih-Ming Chen, Supawadee Sriyam, Supachok Sinchaikul, Suree Phutrakul und Shui-Tien Chen. „Glycoproteomic analysis and molecular modeling of haptoglobin multimers“. ELECTROPHORESIS 32, Nr. 12 (Juni 2011): 1422–32. http://dx.doi.org/10.1002/elps.201000464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Coats, Eugene A., und James J. Knittel. „Correlation Analysis and Molecular Modeling of Cholecystokinin Inhibitors“. Quantitative Structure-Activity Relationships 9, Nr. 2 (1990): 94–101. http://dx.doi.org/10.1002/qsar.19900090204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Fernández, Elmer Andrés, Carlos Alberto Perazzo, Rodolfo Valtuille, Peter Willshaw und Mónica Balzarini. „Molecular Kinetics Modeling in Hemodialysis: On-Line Molecular Monitoring and Spectral Analysis“. ASAIO Journal 53, Nr. 5 (September 2007): 582–86. http://dx.doi.org/10.1097/mat.0b013e318145bb31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Balasundaram, Arthi. „Molecular modeling and docking analysis of aspirin with pde7b“. Bioinformation 16, Nr. 2 (29.02.2020): 183–88. http://dx.doi.org/10.6026/97320630016183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Taylor, Robin, Graham W. Mullier und Graham J. Sexton. „Automation of conformational analysis and other molecular modeling calculations“. Journal of Molecular Graphics 10, Nr. 3 (September 1992): 152–60. http://dx.doi.org/10.1016/0263-7855(92)80049-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Baranov, V. I., L. A. Gribov und V. E. Dridger. „Computer modeling of standardless molecular spectral analysis of mixtures“. Journal of Analytical Chemistry 67, Nr. 2 (Februar 2012): 114–21. http://dx.doi.org/10.1134/s1061934812020049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Hajihosseini, Morteza, Payam Amini, Dan Voicu, Irina Dinu und Saumyadipta Pyne. „Geostatistical Modeling and Heterogeneity Analysis of Tumor Molecular Landscape“. Cancers 14, Nr. 21 (25.10.2022): 5235. http://dx.doi.org/10.3390/cancers14215235.

Der volle Inhalt der Quelle
Annotation:
Intratumor heterogeneity (ITH) is associated with therapeutic resistance and poor prognosis in cancer patients, and attributed to genetic, epigenetic, and microenvironmental factors. We developed a new computational platform, GATHER, for geostatistical modeling of single cell RNA-seq data to synthesize high-resolution and continuous gene expression landscapes of a given tumor sample. Such landscapes allow GATHER to map the enriched regions of pathways of interest in the tumor space and identify genes that have spatial differential expressions at locations representing specific phenotypic contexts using measures based on optimal transport. GATHER provides new applications of spatial entropy measures for quantification and objective characterization of ITH. It includes new tools for insightful visualization of spatial transcriptomic phenomena. We illustrate the capabilities of GATHER using real data from breast cancer tumor to study hallmarks of cancer in the phenotypic contexts defined by cancer associated fibroblasts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Nicolle, E., A. Boumendjel, S. Macalou, E. Genoux, A. Ahmed-Belkacem, P. A. Carrupt und A. Di Pietro. „QSAR analysis and molecular modeling of ABCG2-specific inhibitors“. Advanced Drug Delivery Reviews 61, Nr. 1 (Januar 2009): 34–46. http://dx.doi.org/10.1016/j.addr.2008.10.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Weltman, Joel K., und George B. Loriot. „Molecular modeling of penicilloate anions: an RHF-SCF analysis“. Journal of Molecular Modeling 9, Nr. 4 (01.08.2003): 225–29. http://dx.doi.org/10.1007/s00894-003-0131-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Morales Medina, Giovanni, und Ramiro Martínez Rey. „MOLECULAR AND MULTISCALE MODELING: REVIEW ON THE THEORIES AND APPLICATIONS IN CHEMICAL ENGINEERING“. CT&F - Ciencia, Tecnología y Futuro 3, Nr. 5 (31.12.2009): 205–23. http://dx.doi.org/10.29047/01225383.458.

Der volle Inhalt der Quelle
Annotation:
We call molecular modeling to the application of suitable laws in the analysis of phenomena occurred at scales less than those accounted for by the macroscopic world. Such different scales (including micro-, meso- and macroscales), can be linked and integrated in order to improve understanding and predictions of complex physical chemistry phenomena, thus originating a global or multiscale analysis. A considerable amount of chemical engineering phenomena are complex due to the interrelation among these different realms of length and time. Multiscale modeling rises as an alternative for an outstanding mathematical and conceptual representation of such phenomena. This adequate representation may help to design and optimize chemical and petrochemical processes from a microscopic point of view. Herein we present a brief introduction to both molecular and multiscale modeling methods. We also comment and examine opportunities for applying the different levels of modeling to the analysis of industrial problems. The fundamental mathematical machinery of the molecular modelling theories is presented in order to motivate the study of these new engineering tools. Finally, we show a classification of different strategies for applying multilevel analysis, illustrating various examples of each methodology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

López-Ruiz, Ricardo. „Mathematical Biology: Modeling, Analysis, and Simulations“. Mathematics 10, Nr. 20 (20.10.2022): 3892. http://dx.doi.org/10.3390/math10203892.

Der volle Inhalt der Quelle
Annotation:
Mathematical biology has been an area of wide interest during the recent decades, as the modeling of complicated biological processes has enabled the creation of analytical and computational approaches to many different bio-inspired problems originating from different branches such as population dynamics, molecular dynamics in cells, neuronal and heart diseases, the cardiovascular system, genetics, etc [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Majumder, Riddhi, Sujata Roy und Ashoke Ranjan Thakur. „Analysis of Delta–Notch interaction by molecular modeling and molecular dynamic simulation studies“. Journal of Biomolecular Structure and Dynamics 30, Nr. 1 (Mai 2012): 13–29. http://dx.doi.org/10.1080/07391102.2012.674184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Rakauskas, R. J., J. Šulskus und S. Vošterienė. „PC Cluster Possibilities in Mathematical Modeling in Quantum Mechanical Molecular Computations“. Nonlinear Analysis: Modelling and Control 7, Nr. 2 (05.12.2002): 113–21. http://dx.doi.org/10.15388/na.2002.7.2.15197.

Der volle Inhalt der Quelle
Annotation:
We present the PC cluster built in the Department of Applied Sciences of Lithuanian Military Academy. The structure of the cluster is described and the performance is evaluated by solving of linear algebra testing tasks and nonlinear quantum chemistry molecular electronic structure computations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Belaidi, Salah, und Dalal Harkati. „Conformational Analysis in 18-Membered Macrolactones Based on Molecular Modeling“. ISRN Organic Chemistry 2011 (19.04.2011): 1–5. http://dx.doi.org/10.5402/2011/594242.

Der volle Inhalt der Quelle
Annotation:
Conformational analysis of 18-ring membered macrolactones has been carried out using molecular mechanics calculations and molecular dynamics. A high conformational flexibility of macrolactones was obtained, and an important stereoselectivity was observed for the complexed macrolides. For 18d macrolactone, which was presented by a most favored conformer with 20.1% without complex, it was populated with 50.1% in presence of Fe(CO)3.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

REGO, José, Jorddy CRUZ, Marcondes COSTA, Fabrine ALVES, Isaque MEDEIROS, Gleice PEREIRA, Maria SANTOS, Pabllo SANTOS, Alessandra LOPES und Davi BRASIL. „ANALYSIS OF PURINIC ALKALOIDS BY XRD AND MOLECULAR MODELING METHODS“. BOLETIM DO MUSEU DE GEOCIÊNCIAS DA AMAZÔNIA 8 (2021), Nr. 1 (06.05.2021): 1–8. http://dx.doi.org/10.31419/issn.2594-942x.v82021i1a1jarr.

Der volle Inhalt der Quelle
Annotation:
Theophylline, theobromine and caffeine, are purine-based alkaloids in which the main differentiation in the molecular structure is the presence of methyls, one, two and three, respectively in these substances. This study presents an analysis by XRD and molecular modeling methods of the alkaloid’s caffeine and theobromine. The crystalline structure of caffeine was characterized as a monoclinic system, and the diffractogram of the caffeine crystals showed peaks with regions of greater intensity at 2θ = 11.7616 ° (d = 7.51 Å; I% = 80.13) and 2θ = 11.9416 ° (d = 7.40 Å; I% = 98.14). In the diffractogram of the theobromine crystal sample, peaks of greater intensity occurred in the regions 2θ = 13.4616 ° (d = 6.57 Å; I% = 98.92) and 2θ = 27.0816 ° (d = 3, 28 Å; I% = 67.23). Results obtained by XRD for caffeine and theobromine were compatible with standard cards of the X’Pert High Score Plus® program. The presence of an extra methyl in the structure of the caffeine purine base, suggests, a shift in the values ​​of the angle 2 θ for the main peaks of theobromine, as well as an increase in intensity, mainly in 27.016, theobromine also presents a peak in the region 10.6 which does not occur in caffeine. Statistical results reveal that the linear models for data of peaks of specific angles in 2θ of the samples, presented good linear correlation (R2> 98%) and satisfactory results after the procedure of cross validation. caffeine and theobromine also showed important differences in interactions with adenosine A2AR, particularly in hydrophobic and hydrogen interactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Yudina, M. N. „Software system for molecular networks of cells analysis and modeling“. Omsk Scientific Bulletin, Nr. 162 (2018): 265–70. http://dx.doi.org/10.25206/1813-8225-2018-162-265-270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Temml, Veronika, und Zsofia Kutil. „Structure-based molecular modeling in SAR analysis and lead optimization“. Computational and Structural Biotechnology Journal 19 (2021): 1431–44. http://dx.doi.org/10.1016/j.csbj.2021.02.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Bicen, A. Ozan, und Ian F. Akyildiz. „Interference Modeling and Capacity Analysis for Microfluidic Molecular Communication Channels“. IEEE Transactions on Nanotechnology 14, Nr. 3 (Mai 2015): 570–79. http://dx.doi.org/10.1109/tnano.2015.2418175.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Kuscu, Murat, und Ozgur B. Akan. „Modeling and Analysis of SiNW FET-Based Molecular Communication Receiver“. IEEE Transactions on Communications 64, Nr. 9 (September 2016): 3708–21. http://dx.doi.org/10.1109/tcomm.2016.2589935.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zhang, Jianhua, Zhigang Shang, Xiaohui Zhang und Yuntao Zhang. „Modeling and analysis of Schistosoma Argonaute protein molecular spatial conformation“. Asian Pacific Journal of Tropical Biomedicine 1, Nr. 4 (August 2011): 275–78. http://dx.doi.org/10.1016/s2221-1691(11)60042-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Król, Dawid Jan, Artur Wymysłowski und Kamil Nouri Allaf. „Adhesion work analysis through molecular modeling and wetting angle measurement“. Microelectronics Reliability 55, Nr. 5 (April 2015): 758–64. http://dx.doi.org/10.1016/j.microrel.2015.02.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Mikros, E. „Conformational analysis of asperlin by NMR spectroscopy and molecular modeling“. Carbohydrate Research 294, Nr. 1-4 (20.11.1996): 1–13. http://dx.doi.org/10.1016/s0008-6215(96)00201-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Mikros, Emmanuel, Photis Dais und Françoise Sauriol. „Conformational analysis of asperlin by NMR spectroscopy and molecular modeling“. Carbohydrate Research 294 (November 1996): 1–13. http://dx.doi.org/10.1016/s0008-6215(96)90609-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zein, Haggag S., Jaime A. Teixeira da Silva und Kazutaka Miyatake. „Structure–function analysis and molecular modeling of DNase catalytic antibodies“. Immunology Letters 129, Nr. 1 (März 2010): 13–22. http://dx.doi.org/10.1016/j.imlet.2010.01.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Zheng, Qiang, Rakefet Rosenfeld und Donald J. Kyle. „Theoretical analysis of the multicopy sampling method in molecular modeling“. Journal of Chemical Physics 99, Nr. 11 (Dezember 1993): 8892–96. http://dx.doi.org/10.1063/1.465557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Raza, Muhammad Imran, Hajra Sadia, Sajid Mansoor, Attya Bhatti, Muhammad Ayaz Anwar, Peter John, Qurat Ul Ain Rana und Ishtiaq Qadri. „Molecular modeling and mutational analysis of macrophage colony stimulating factor“. Current Opinion in Biotechnology 22 (September 2011): S60. http://dx.doi.org/10.1016/j.copbio.2011.05.166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Yang, Chia-Wei, und Nien-Ti Tsou. „Microstructural analysis and molecular dynamics modeling of shape memory alloys“. Computational Materials Science 131 (April 2017): 293–300. http://dx.doi.org/10.1016/j.commatsci.2017.02.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Zhao, Qianqian, Weixiang Zhang, Runmiao Wang, Yitao Wang und Defang Ouyang. „Research Advances in Molecular Modeling in Cyclodextrins“. Current Pharmaceutical Design 23, Nr. 3 (20.02.2017): 522–31. http://dx.doi.org/10.2174/1381612822666161208142617.

Der volle Inhalt der Quelle
Annotation:
Background: Cyclodextrins (CDs), as one type of the novel pharmaceutical excipients, have been widely used in drug delivery and pharmaceutical industry. Over the past decades, a large amount of molecular modeling studies in CDs were reported for profound understanding of structural, dynamic and energetic features of CDs systems. Thus, this review is focused on qualitative and quantitative analysis of research outputs on molecular modeling in CDs. Methods: The original data were collected from Web of Science and analyzed by scientific knowledge mapping tools, including Citespace, Science of Science, VOSviewer, GPSvisualizer and Gephi software. Scientific knowledge mapping, as an emerging approach for literature analysis, was employed to identify the knowledge structure and capture the development of the science in a visual way. Results: The results of analysis included research outputs landscape, collaboration patterns, knowledge structure and research frontiers shift with time. China had the largest contributions to the publication number in this area, while USA dominated the high quality research outputs. International collaboration between USA and Europe was much stronger than that within Asia. J American Chemical Society, as one of the most important journals, played a pivotal role in linking different research fields. Furthermore, seven important thematic clusters were identified by the research cluster analysis with visualization tools and demonstrated from three different perspectives including: (1) the mostly-used CD molecules: β-Cyclodextrin, (2) preferred modeling tools: docking calculation and molecular dynamic, (3) hot research fields: structural properties, solubility, chiral recognition and solidstate inclusion complexes. Moreover, research frontier shift in the past three decades was traced by detecting keywords bursts with high citation. Conclusion: The current review provided us a macro-perspective and intellectual landscape to molecular modeling in CDs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Soni, Sangeeta, Chetna Tyagi, Abhinav Grover und Shyamal K. Goswami. „Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants“. BMC Research Notes 7, Nr. 1 (2014): 446. http://dx.doi.org/10.1186/1756-0500-7-446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Qin, Jin, Beilei Lei, Lili Xi, Huanxiang Liu und Xiaojun Yao. „Molecular modeling studies of Rho kinase inhibitors using molecular docking and 3D-QSAR analysis“. European Journal of Medicinal Chemistry 45, Nr. 7 (Juli 2010): 2768–76. http://dx.doi.org/10.1016/j.ejmech.2010.02.059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Zou, Jian, Wentao Liang und Sulin Zhang. „Coarse-grained molecular dynamics modeling of DNA-carbon nanotube complexes“. International Journal for Numerical Methods in Engineering 83, Nr. 8-9 (19.08.2010): 968–85. http://dx.doi.org/10.1002/nme.2819.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Maris, Kurniawati, Amak Y. E. Prasetyo, Subandi . und Suharti . „Analysis of Molecular Modeling and Molecular Docking of Beta-glucanase from Metagenomic Expression Library as Candida Antibiofilm Candidate“. INTERNATIONAL JOURNAL OF DRUG DELIVERY TECHNOLOGY 12, Nr. 03 (30.06.2022): 929–35. http://dx.doi.org/10.25258/ijddt.12.3.01.

Der volle Inhalt der Quelle
Annotation:
MOvergrowth of Candida tends to produce high levels of secondary metabolites affecting the immersion of infectious and degenerative diseases. Biofilm’s existence as a virulence factor of Candida makes it challenging to overcome causing multidrugresistant issues. Studies on the effectiveness of Candida antibiofilm drug candidates should be supported by data related to model structure and molecular interaction within the eradication process of biofilm through homology modeling and in-silico docking. This study aims to determine molecular interactions between 1,3-β-glucanase Achatina fulica in which the substrate is, through homology modeling and docking studies within the biofilm matrix eradication process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

PAL, Ria. „Molecular Modeling on Structure-Function Analysis of Human Progesterone Receptor Modulators“. Scientia Pharmaceutica 79, Nr. 3 (2011): 461–77. http://dx.doi.org/10.3797/scipharm.1105-03.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Seki, Y., und K. Soda. „Structural Analysis of Acid-unfolded Myoglobin by a Molecular Modeling Method“. Seibutsu Butsuri 41, supplement (2001): S174. http://dx.doi.org/10.2142/biophys.41.s174_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

dos Santos, Cleydson, Cleison Lobato, Francinaldo Braga, Josivan Costa, Hugo Favacho, Jose Carvalho, Williams Macedo, Davi Brasil, Carlos da Silva und Lorane da Silva Hage-Melim. „Rational Design of Antimalarial Drugs Using Molecular Modeling and Statistical Analysis“. Current Pharmaceutical Design 21, Nr. 28 (22.09.2015): 4112–27. http://dx.doi.org/10.2174/1381612821666150528121423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Chakraborty, Raja, Sayak Ganguli, Hirak Jyoti Chakraborty und Abhijit Datta. „STRUCTURAL ANALYSIS AND MOLECULAR MODELING OF HUMAN DOPAMINE RECEPTOR 5 (DRD5)“. International Journal of Bioinformatics Research 2, Nr. 2 (30.12.2010): 96–102. http://dx.doi.org/10.9735/0975-3087.2.2.96-102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Pandey, Bharati, Pradeep Sharma, Chetna Tyagi, Sukriti Goyal, Abhinav Grover und Indu Sharma. „Structural modeling and molecular simulation analysis of HvAP2/EREBP from barley“. Journal of Biomolecular Structure and Dynamics 34, Nr. 6 (19.10.2015): 1159–75. http://dx.doi.org/10.1080/07391102.2015.1073630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Mathieu, Axel P., Pierre Lavigne und Jean-Guy LeHoux. „MOLECULAR MODELING AND STRUCTURE-BASED THERMODYNAMIC ANALYSIS OF THE StAR PROTEIN“. Endocrine Research 28, Nr. 4 (Januar 2002): 419–23. http://dx.doi.org/10.1081/erc-120016817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Udrescu, Lucreția, Laura Sbârcea, Adriana Fuliaș, Ionuț Ledeți, Gabriela Vlase, Paul Barvinschi und Ludovic Kurunczi. „Physicochemical Analysis and Molecular Modeling of the Fosinoprilβ-Cyclodextrin Inclusion Complex“. Journal of Spectroscopy 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/748468.

Der volle Inhalt der Quelle
Annotation:
This research investigates the interaction between fosinopril sodium (FOS) and beta-cyclodextrin (β-CD) in aqueous solution and in solid state, in order to prove the formation of an inclusion complex between the two components. The stoichiometry of the inclusion complex was found as 1 : 1 by employing continuous variation method in UV. The formation constant was calculated as 278.93 M−1using Benesi-Hildebrand equation. The kneaded product (KP) and the physical mixture (PM) were further experimentally examined, using FTIR, powder X-ray diffractometry, and thermal analysis. The results confirm that the physicochemical properties of the FOS/β-CD KP are different from FOS and that the kneading method leads to formation of solid state inclusion complex between FOS andβ-CD. Structural studies of the FOS/β-CD were carried out using molecular modeling techniques, in order to explain the complexation mechanism and the host-guest geometry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Masoud, Mamdouh S., Amr M. Beltagi und Hany A. Moutawa. „Synthesis, spectral, molecular modeling, thermal analysis studies of orange (II) complexes“. Journal of Molecular Structure 1175 (Januar 2019): 335–45. http://dx.doi.org/10.1016/j.molstruc.2018.07.094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Leal-Pinto, E., B. E. Cohen und R. G. Abramson. „Functional Analysis and Molecular Modeling of a Cloned Urate Transporter/Channel“. Journal of Membrane Biology 169, Nr. 1 (01.05.1999): 13–27. http://dx.doi.org/10.1007/pl00005897.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie