Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Molecular modeling analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Molecular modeling analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Molecular modeling analysis"
Hanai, Toshihiko. „Molecular Modeling for Quantitative Analysis of Molecular Interaction†“. Letters in Drug Design & Discovery 2, Nr. 3 (01.05.2005): 232–38. http://dx.doi.org/10.2174/1570180053765192.
Der volle Inhalt der QuelleKumawat, Renu, Vineet Sahula und Manoj S. Gaur. „Probabilistic modeling and analysis of molecular memory“. ACM Journal on Emerging Technologies in Computing Systems 11, Nr. 1 (06.10.2014): 1–16. http://dx.doi.org/10.1145/2629533.
Der volle Inhalt der QuelleGutiérrez, Alberto, Mert Atilhan und Santiago Aparicio. „Molecular Modeling Analysis of CO2Absorption by Glymes“. Journal of Physical Chemistry B 122, Nr. 6 (06.02.2018): 1948–57. http://dx.doi.org/10.1021/acs.jpcb.7b10276.
Der volle Inhalt der QuelleBoyle, A. „Polymer chain packing analysis using molecular modeling“. Journal of Molecular Graphics 12, Nr. 3 (September 1994): 219–25. http://dx.doi.org/10.1016/0263-7855(94)80091-x.
Der volle Inhalt der QuelleChahibi, Youssef, Ian F. Akyildiz und Ilangko Balasingham. „Propagation Modeling and Analysis of Molecular Motors in Molecular Communication“. IEEE Transactions on NanoBioscience 15, Nr. 8 (Dezember 2016): 917–27. http://dx.doi.org/10.1109/tnb.2016.2620439.
Der volle Inhalt der QuelleBanks, H. T., N. S. Luke und J. R. Samuels. „Viscoelasticity in polymers: Phenomenological to molecular mathematical modeling“. Numerical Methods for Partial Differential Equations 23, Nr. 4 (2007): 817–31. http://dx.doi.org/10.1002/num.20250.
Der volle Inhalt der QuelleKorendyasev, S. P., A. V. Firsova, D. M. Mordasov und M. M. Mordasov. „Modeling and Fractal Analysis of Molecular Film Structures“. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 23, Nr. 3 (2017): 527–34. http://dx.doi.org/10.17277/vestnik.2017.03.pp.527-534.
Der volle Inhalt der QuelleObiso, Jr., Richard J., David R. Bevan und Tracy D. Wilkins. „Molecular Modeling and Analysis of Fragilysin, theBacteroides fragilisToxin.“ Clinical Infectious Diseases 25, s2 (September 1997): S153—S155. http://dx.doi.org/10.1086/516240.
Der volle Inhalt der QuelleFerreira-Júnior, José Ribamar, Lucas Bleicher und Mario H. Barros. „Her2p molecular modeling, mutant analysis and intramitochondrial localization“. Fungal Genetics and Biology 60 (November 2013): 133–39. http://dx.doi.org/10.1016/j.fgb.2013.06.006.
Der volle Inhalt der QuelleBoonyapranai, Kongsak, Hsien-Yu Tsai, Miles Chih-Ming Chen, Supawadee Sriyam, Supachok Sinchaikul, Suree Phutrakul und Shui-Tien Chen. „Glycoproteomic analysis and molecular modeling of haptoglobin multimers“. ELECTROPHORESIS 32, Nr. 12 (Juni 2011): 1422–32. http://dx.doi.org/10.1002/elps.201000464.
Der volle Inhalt der QuelleDissertationen zum Thema "Molecular modeling analysis"
Noel, Adam. „Modeling and analysis of diffusive molecular communication systems“. Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54906.
Der volle Inhalt der QuelleApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Aghaei, Amin. „Symmetry-Adapted Molecular Modeling of Nanostructures and Biomembranes“. Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/295.
Der volle Inhalt der QuellePeacock, Darren. „Parallelized multigrid applied to modeling molecular electronics“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101160.
Der volle Inhalt der QuelleOne of the difficulties of ab-initio calculations is that they can be extremely costly in terms of the computing time and memory that they require. For this reason, in addition to using appropriate approximations, sophisticated numerical analysis tech niques need to be used. One of the bottlenecks in the NEGF-DFT method is solving the Poisson equation on a large real space grid. For studying systems incorporating a gate voltage it is required to be able to solve this problem with nonperiodic boundary conditions. In order to do this a technique called multigrid is used. This thesis examines the multigrid technique and develops an efficient implementation for the purpose of use in the NEGF-DFT formalism. For large systems, where it is necessary to use especially large real space grids, it is desirable to run simulations on parallel computing clusters to handle the memory requirements and make the code run faster. For this reason a parallel implementation of multigrid is developed and tested for performance. The multigrid tool is incorporated into the NEGF-DFT formalism and tested to ensure that it is properly implemented. A few calculations are made on a benzenedithiol system with gold leads to show the effect of an applied gate voltage.
Fang, Yu-Hua. „Quantification of Pharmacokinetics in Small Animals with Molecular Imaging and Compartment Modeling Analysis“. Cleveland, Ohio : Case Western Reserve University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1238635584.
Der volle Inhalt der QuelleDepartment of Biomedical Engineering Abstract Title from OhioLINK abstract screen (viewed on 10 April 2009) Available online via the OhioLINK ETD Center
Chen, Lulu. „Mathematical Modeling and Deconvolution for Molecular Characterization of Tissue Heterogeneity“. Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96553.
Der volle Inhalt der QuelleDoctor of Philosophy
Tissue samples are essentially mixtures of tissue or cellular subtypes where the proportions of individual subtypes vary across different tissue samples. Data deconvolution aims to dissect tissue heterogeneity into biologically important subtypes, their proportions, and their marker genes. The physical solution to mitigate tissue heterogeneity is to isolate pure tissue components prior to molecular profiling. However, these experimental methods are time-consuming, expensive and may alter the expression values during isolation. Existing literature primarily focuses on supervised deconvolution methods which require a priori information. This approach has an inherent problem as it relies on the quality and accuracy of the a priori information. In this dissertation, we propose and develop a fully unsupervised deconvolution method - deconvolution by Convex Analysis of Mixtures (debCAM) that can estimate the mixing proportions and 'averaged' expression profiles of individual subtypes present in heterogeneous tissue samples. Furthermore, we also propose and develop debCAM2.0 that can estimate 'individualized' expression profiles of participating subtypes in complex tissue samples. Subtype-specific expressed markers, or marker genes (MGs), serves as critical a priori information for supervised deconvolution. MGs are exclusively and consistently expressed in a particular tissue or cell subtype while detecting such unique MGs involving many subtypes constitutes a challenging task. We propose and develop a statistically-principled method - One Versus Everyone Subtype Exclusively-expressed Genes (OVESEG-test) for robust detection of MGs from purified profiles of many subtypes.
Saraf, Sanjeev R. „Molecular characterization of energetic materials“. Texas A&M University, 2003. http://hdl.handle.net/1969.1/331.
Der volle Inhalt der QuelleRobertson, Scott C. „Mechanisms of protein kinase activation determined by molecular modeling and mutational analysis /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9938596.
Der volle Inhalt der QuelleSprague, Robin M. „Molecular modeling of DNA with minor groove binding agents and intercalators“. Scholarly Commons, 2000. https://scholarlycommons.pacific.edu/uop_etds/539.
Der volle Inhalt der QuelleFoster, Michael Scott. „Design, synthesis, kinetic analysis, molecular modeling, and pharmacological evaluation of novel inhibitors of peptide amidation“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/31816.
Der volle Inhalt der QuelleCommittee Chair: Dr. Sheldon W. May; Committee Member: Dr. James C. Powers; Committee Member: Dr. Nicholas Hud; Committee Member: Dr. Niren Murthy; Committee Member: Dr. Stanley H. Pollock. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Wu, Tzong-Ming. „X-ray analysis and molecular modeling of the structure of aromatic polyimide fibers“. Case Western Reserve University School of Graduate Studies / OhioLINK, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=case1062601845.
Der volle Inhalt der QuelleBücher zum Thema "Molecular modeling analysis"
Lü, Jinhu, und Pei Wang. Modeling and Analysis of Bio-molecular Networks. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9144-0.
Der volle Inhalt der QuelleProtein-protein complexes: Analysis, modeling and drug design. London: Imperial College Press, 2010.
Den vollen Inhalt der Quelle findenauthor, Sarich Marco 1985, Hrsg. Metastability and Markov state models in molecular dynamics: Modeling, analysis, algorithmic approaches. Providence, Rhode Island: American Mathematical Society, 2013.
Den vollen Inhalt der Quelle findenInstitute for Computer Applications in Science and Engineering., Hrsg. Ranges of applicability for the continuum-beam model in the constitutive analysis of carbon nanotubes: Nanotubes or nano-beams? Hampton, VA: ICASE, NASA Langley Research Center, 2001.
Den vollen Inhalt der Quelle findenAndriyanova, Mariya, Aslanli Aslanli, Nataliya Basova, Viktor Bykov, Sergey Varfolomeev, Konstantin Gorbunov, Valentin Gorelenkov et al. ORGANOPHOSPHORUS NEUROTOXINS. ru: Publishing Center RIOR, 2020. http://dx.doi.org/10.29039/02026-5.
Der volle Inhalt der QuelleZhou, Xiaobo. Computational systems bioinformatics: Methods and biomedical applications. New Jersey: World Scientific, 2008.
Den vollen Inhalt der Quelle findenWang, Pei, und Jinhu Lü. Modeling and Analysis of Bio-Molecular Networks. Springer Singapore Pte. Limited, 2020.
Den vollen Inhalt der Quelle findenWang, Pei, und Jinhu Lü. Modeling and Analysis of Bio-Molecular Networks. Springer Singapore Pte. Limited, 2021.
Den vollen Inhalt der Quelle findenNikoloski, Zoran, und Sergio Grimbs. Network-Based Molecular Biology: Data-Driven Modeling and Analysis. De Gruyter, Inc., 2016.
Den vollen Inhalt der Quelle findenNikoloski, Zoran, und Sergio Grimbs. Network-Based Molecular Biology: Data-Driven Modeling and Analysis. De Gruyter, Inc., 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Molecular modeling analysis"
Rose, Beate G., Sandra A. Buckley, Carol Kamps-Holtzapple, Ross C. Beier und Larry H. Stanker. „Molecular Modeling Studies of Ceftiofur“. In Immunoassays for Residue Analysis, 82–98. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0621.ch007.
Der volle Inhalt der QuelleVeroniki, Areti Angeliki, Georgios Seitidis, Stavros Nikolakopoulos, Marta Ballester, Jessica Beltran, Monique Heijmans und Dimitris Mavridis. „Modeling in Network Meta-Analysis“. In Methods in Molecular Biology, 245–61. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1566-9_15.
Der volle Inhalt der QuelleGräter, Frauke. „Strained Molecules: Insights from Force Distribution Analysis“. In Modeling of Molecular Properties, 301–10. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636402.ch19.
Der volle Inhalt der QuelleEriksson, Jan, und David Fenyö. „Modeling Mass Spectrometry-Based Protein Analysis“. In Methods in Molecular Biology, 109–17. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-977-2_8.
Der volle Inhalt der QuelleBeier, Ross C., Marcel H. Elissalde und Larry H. Stanker. „Molecular Modeling Studies of the Fumonisin Mycotoxins“. In Immunoassays for Residue Analysis, 368–85. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0621.ch029.
Der volle Inhalt der QuelleCui, S. T., und H. D. Cochran. „Molecular Dynamics Modeling of the Molecular Transport Through a Nanpore“. In Micro Total Analysis Systems 2001, 203–4. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-1015-3_89.
Der volle Inhalt der QuelleMannhold, Raimund, und Gabriele Cruciani. „Molecular lipophilicity descriptors: a multivariate analysis“. In Molecular Modeling and Prediction of Bioactivity, 265–66. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4141-7_33.
Der volle Inhalt der QuelleLü, Jinhu, und Pei Wang. „Reconstruction of Bio-molecular Networks“. In Modeling and Analysis of Bio-molecular Networks, 53–105. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9144-0_2.
Der volle Inhalt der QuelleRadchenko, Eugene V., Vladimir A. Palyulin und Nikolai S. Zefirov. „Molecular Field Topology Analysis (MFTA) as the Basis for Molecular Design“. In Molecular Modeling and Prediction of Bioactivity, 460–61. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4141-7_118.
Der volle Inhalt der QuelleWang, Ruiqi, Xing-Ming Zhao und Zengrong Liu. „Modeling and Dynamical Analysis of Molecular Networks“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 2139–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02469-6_90.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Molecular modeling analysis"
Hill, S. C., M. D. Barnes, W. B. Whitten und J. M. Ramsey. „Modeling Fluorescence Collection from Single Molecules in Liquid Microspheres“. In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/lacea.1996.lwd.7.
Der volle Inhalt der QuelleSOMOGYI, ROLAND, HIROAKI KITANO, SATORU MNANO und QIANG ZHENG. „MOLECULAR NETWORK MODELING AND DATA ANALYSIS“. In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447331_0027.
Der volle Inhalt der QuelleSandmann, Werner. „Applicability of Importance Sampling to Coupled Molecular Reactions“. In Recent Advances in Stochastic Modeling and Data Analysis. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709691_0052.
Der volle Inhalt der QuelleRakesh, L., Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Modeling and Bio molecular Self-assembly via Molecular Dynamics and Dissipative Particle Dynamics“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241606.
Der volle Inhalt der QuelleZhou, Taimei, Xueying Zheng, Deqing Yi und Qingying Zhang. „Molecular Modeling and Structure Analysis of S100 Calcium Binding Protein A14: Molecular Modeling and Structure Analysis of S100A14“. In 2009 2nd International Conference on Biomedical Engineering and Informatics. IEEE, 2009. http://dx.doi.org/10.1109/bmei.2009.5301740.
Der volle Inhalt der QuelleShepelev, Igor A., Ivan D. Kolesnikov und Elena A. Korznikova. „Analysis of a crowdion propagated in an extremely heated tungsten“. In Laser Physics, Photonic Technologies, and Molecular Modeling, herausgegeben von Vladimir L. Derbov. SPIE, 2022. http://dx.doi.org/10.1117/12.2626247.
Der volle Inhalt der QuelleDoss, Derek J., Jon S. Heiselman, Ma Luo, Logan W. Clements, Michael I. Miga, Daniel Brown und Filip Banovac. „Quantitative imaging analysis to guide biopsy for molecular biomarkers“. In Image-Guided Procedures, Robotic Interventions, and Modeling, herausgegeben von Baowei Fei und Cristian A. Linte. SPIE, 2019. http://dx.doi.org/10.1117/12.2513588.
Der volle Inhalt der QuelleMezey, Paul G. „Molecular modeling: An open invitation for applied mathematics“. In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825416.
Der volle Inhalt der QuelleKulkova, E. Yu, M. G. Khrenova, I. V. Polyakov und A. V. Nemukhin. „Computer modeling of properties of complex molecular systems“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912965.
Der volle Inhalt der QuelleLavrova, Anastasia I., Eugene Postnikov und Diljara Esmedljaeva. „Mathematical modeling of cavity development in lung tuberculosis“. In Computations and Data Analysis: from Molecular Processes to Brain Functions, herausgegeben von Dmitry E. Postnov. SPIE, 2021. http://dx.doi.org/10.1117/12.2588475.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Molecular modeling analysis"
Rafaeli, Ada, und Russell Jurenka. Molecular Characterization of PBAN G-protein Coupled Receptors in Moth Pest Species: Design of Antagonists. United States Department of Agriculture, Dezember 2012. http://dx.doi.org/10.32747/2012.7593390.bard.
Der volle Inhalt der QuelleGurevitz, Michael, William A. Catterall und Dalia Gordon. face of interaction of anti-insect selective toxins with receptor site-3 on voltage-gated sodium channels as a platform for design of novel selective insecticides. United States Department of Agriculture, Dezember 2013. http://dx.doi.org/10.32747/2013.7699857.bard.
Der volle Inhalt der Quelle