Auswahl der wissenschaftlichen Literatur zum Thema „Molecular magnetic resonance imaging“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Molecular magnetic resonance imaging" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Molecular magnetic resonance imaging"

1

Modo, Mike, und Steve C. R. Williams. „Molecular Imaging by Magnetic Resonance Imaging“. Rivista di Neuroradiologia 16, Nr. 2_suppl_part2 (September 2003): 23–27. http://dx.doi.org/10.1177/1971400903016sp207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sosnovik, David E. „Molecular Imaging in Cardiovascular Magnetic Resonance Imaging“. Topics in Magnetic Resonance Imaging 19, Nr. 1 (Februar 2008): 59–68. http://dx.doi.org/10.1097/rmr.0b013e318176c57b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Terreno, Enzo, Daniela Delli Castelli, Alessandra Viale und Silvio Aime. „Challenges for Molecular Magnetic Resonance Imaging“. Chemical Reviews 110, Nr. 5 (12.05.2010): 3019–42. http://dx.doi.org/10.1021/cr100025t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

LANZA, G., P. WINTER, S. CARUTHERS, A. MORAWSKI, A. SCHMIEDER, K. CROWDER und S. WICKLINE. „Magnetic resonance molecular imaging with nanoparticles“. Journal of Nuclear Cardiology 11, Nr. 6 (Dezember 2004): 733–43. http://dx.doi.org/10.1016/j.nuclcard.2004.09.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Curtis, R. J. „Magnetic resonance imaging.“ Annals of the Rheumatic Diseases 50, Nr. 1 (01.01.1991): 66. http://dx.doi.org/10.1136/ard.50.1.66-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sosnovik, David E., Matthias Nahrendorf und Ralph Weissleder. „Molecular Magnetic Resonance Imaging in Cardiovascular Medicine“. Circulation 115, Nr. 15 (17.04.2007): 2076–86. http://dx.doi.org/10.1161/circulationaha.106.658930.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Peterson, Eric C., und Louis J. Kim. „Magnetic Resonance Imaging at the Molecular Level“. World Neurosurgery 73, Nr. 6 (Juni 2010): 604–5. http://dx.doi.org/10.1016/j.wneu.2010.06.044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Winter, Patrick M., und Michael D. Taylor. „Magnetic Resonance Molecular Imaging of Plaque Angiogenesis“. Current Cardiovascular Imaging Reports 5, Nr. 1 (03.01.2012): 36–44. http://dx.doi.org/10.1007/s12410-011-9121-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rothwell, William P. „Nuclear magnetic resonance imaging“. Applied Optics 24, Nr. 23 (01.12.1985): 3958. http://dx.doi.org/10.1364/ao.24.003958.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Goldman, M. „Nuclear Magnetic Resonance Imaging“. Physica Scripta T19B (01.01.1987): 476–80. http://dx.doi.org/10.1088/0031-8949/1987/t19b/025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Molecular magnetic resonance imaging"

1

Zhu, Bo Ph D. Massachusetts Institute of Technology. „Acoustical-molecular techniques for magnetic resonance imaging“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103499.

Der volle Inhalt der Quelle
Annotation:
Thesis: Ph. D. in Biomedical Engineering, Harvard-MIT Program in Health Sciences and Technology, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Magnetic resonance imaging (MRI) is a remarkably flexible diagnostic platform due to the variety of clinically relevant physical, chemical, and biological phenomena it can detect. In addition to the host of endogenous contrast mechanisms available, MRI functionality can be further extended by incorporating exogenous factors to attain sensitivity to new classes of indicators. Molecular imaging with targeted injectable contrast agents and MR elastography with externally delivered acoustic vibrations are two such advancements with increasing clinical significance. Conventionally employed separately, this work explores how exogenous components can interact cooperatively in imaging disease and may be combined to more accurately stage disease progression and generate novel mechanisms of MR contrast, using contrast agents and acoustic stimulation as model systems. We imaged hepatic fibrosis in a rat model and found that collagen-binding paramagnetic contrast agents and shear wave MR elastography had partially uncorrelated staging abilities, due to the disease condition's differential timing of collagen production and its stiff cross-linking. This complementary feature enabled us to form a composite multivariate model incorporating both methods which exhibited superior diagnostic staging over all stages of fibrosis progression. We then integrated acoustics and molecular-targeting agents at a deeper level in the form of a novel contrast mechanism, Acoustically Induced Rotary Saturation (AIRS), which switches "on" and "off" the image contrast due to the agents by adjusting the resonance of the spin-lock condition. This contrast modulation ability provides unprecedented clarity in identifying contrast agent presence as well as sensitive and quantitative statistical measurements via rapidly modulated block design experiments. Finally, we extend the AIRS method and show preliminary results for Saturation Harmonic Induced Rotary Saturation (SHIRS), which detects the second harmonic time-oscillation of iron oxide nanoparticles' magnetization in response to an oscillating applied field around B0. We also illustrate an exploratory method of selectively imaging iron oxide agents by diffusion kurtosis measures of freely diffusing water in solutions of magnetic nanoparticles.
by Bo Zhu.
Ph. D. in Biomedical Engineering
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zurkiya, Omar. „Magnetic Resonance Molecular Imaging Using Iron Oxide Nanoparticles“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19848.

Der volle Inhalt der Quelle
Annotation:
Magnetic resonance imaging (MRI) is regularly used to obtain anatomical images, greatly advancing biomedical research and clinical health care today, but its full potential in providing functional, physiological, and molecular information is only beginning to emerge. The goal of magnetic resonance molecular imaging is to utilize MRI to acquire information on the molecular level. This dissertation is focused on ways to increase the use of MRI for molecular imaging using superparamagnetic iron oxide (SPIO) nanoparticle induced MRI contrast. This work is divided into three main sections: 1) Elucidation of the contribution of size and coating properties to magnetic nanoparticle induced proton relaxation. To maximize contrast generated without increasing particle size, new methods to increase effects on relaxivity must be developed. Experimental data obtained on a new class of biocompatible particles are presented, along with simulated data. The effects of coating size, proton exchange, and altered diffusion are examined. Simulations are presented confirming the effect of particle coatings on clustering-induced relaxivity changes, and an experimental system demonstrating the clustering effect is presented. 2) Development of a diffusion-dependent, off-resonance imaging protocol for magnetic nanoparticles. This work demonstrates an alternative approach, off-resonance saturation (ORS), for generating contrast sensitive to SPIO nanoparticles. This method leads to a calculated contrast that increases with SPIO concentration. Experimental data and a mathematical model demonstrate and characterize this diffusion-dependent, off-resonance effect. Dependence on off-resonance frequency and power are also investigated. 3) Development of a genetic MRI marker via in vivo magnetic nanoparticle synthesis. This work seeks to provide a gene expression marker for MRI based on bacterial magnetosomes, tiny magnets produced by naturally occurring magnetotactic bacteria. Here, magA is expressed in a commonly used human cell line, 293FT, resulting in the production of magnetic, iron oxide nanoparticles by these cells. MRI shows these particles can be formed in vivo utilizing endogenous iron and can be used to visualize cells positive for magA. These results demonstrate magA alone is sufficient to produce magnetic nanoparticles and that it is an appropriate candidate for an MRI reporter gene.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Duce, Suzanne Louise. „Nuclear magnetic resonance imaging and spectroscopy of food“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gallagher, F. A. „Molecular imaging of tumours using dynamic nuclear polarization and magnetic resonance imaging“. Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599277.

Der volle Inhalt der Quelle
Annotation:
Dynamic Nuclear Polarization (DNP) is an emerging technique for increasing the sensitivity of Magnetic Resonance Imaging (MRI) in the liquid state. It has recently been applied to in vivo imaging of carbon metabolism: the spatial distribution of an injected hyperpolarized 13C-labelled molecule can be imaged in an intact living system, as well as the metabolites formed from it. This work demonstrates how this technique could have potential applications in medicine. 13C-labelled bicarbonate was hyperpolarized and the production of hyperpolarized carbon dioxide has been used to image tumour pH in vivo as well as the pH of the murine brain. An adaptation of this experiment allowed the spatial distribution of the enzyme carbonic anhydrase to be imaged in vitro and in vivo. Fumarate, a citric acid cycle intermediate, was hyperpolarized and its subsequent conversion into malate is shown here to increase with cellular necrosis in vitro; this was used as an early marker of response to chemotherapy both in vitro and in vivo. The metabolism of two other molecules is demonstrated: the in vitro metabolism of hyperpolarized 13C-labelled glutamine to glutamate as well as the metabolism of hyperpolarized 13C-labelled glutamate to α-ketoglutarate in vivo. Both of these present new ways to probe the citric acid cycle and the metabolism of glutamine may also act as a marker of cell proliferation. All of the molecules described here are endogenous and some are already administered intravenously into humans. There is therefore a realistic prospect that this technology can be translated into human imaging in the near future.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

GAMBINO, GIUSEPPE. „High-relaxivity systems and molecular imaging probes for Magnetic Resonance Imaging applications“. Doctoral thesis, Università del Piemonte Orientale, 2014. http://hdl.handle.net/11579/46171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chow, Mei-kwan April, und 周美君. „Cellular, molecular and metabolic magnetic resonance imaging: techniques and applications“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44901148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fan, Shujuan, und 樊淑娟. „In vivo cellular and molecular magnetic resonance imaging of brain functions and injuries“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50491489.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Reynolds, Peter Robert. „Magnetic resonance imaging of cellular and molecular events in inflammation“. Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487305.

Der volle Inhalt der Quelle
Annotation:
Imaging leucocyte trafficking is a major goal in inflammation research, since one ofthe key features of the immune system is cell migration. Ultrasmall iron oxide nanoparticles (USPIO) are iron-based T2-enhancing magnetic resonance (MR) imaging contrast agents, which are a different class ofcontrast agent compared to the more traditional, clinically-established Tl-enhancing agents such as GadoliniumDTPA. The work presented in this project investigates different methods using both these classes ofcontrast agent for imaging different aspects ofinflammation at cellular and molecular levels. The uptake and MR imaging ofUSPIO and Gadolinium-DTPA by leucocytes in-vitro and in-vivo has been investigated. Activated endothelium is a proven surrogate for inflammatory sites. E-selectin is an adhesion molecule which is luminally expressed by activated endothelium early-on in the inflammatory process. This work has tested the hypothesis that activated endothelium can be imaged using magnetic resonance. USPIO have been conjugated with a monoclonal antibody targeting expressed Eselectin, and tested in-vitro and in-vivo using a murine model ofoxazolone-induced contact hypersensitivity inflammation in the ear. The majority ofMR studies in this project were conducted at a high MR field strengths of9.4T. The results indicate that MR imaging ofleucocyte migration and ofmolecular markers of activated endothelium are feasible. However there are limitations on the degree of success, which are presented and discussed. Targeted and cell specific imaging ofinflammatory lesions has the potential to be important investigative tool.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lee, Yik-hin, und 李易軒. „Molecular and cellular investigation of rodent brains by magnetic resonance imaging“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49618118.

Der volle Inhalt der Quelle
Annotation:
Magnetic Resonance Imaging (MRI) is a non-ionizing imaging modality that can provide images with excellent soft tissue contrast at high resolution. In particular, molecular and cellular MRI is a powerful imaging method that could provide a non-invasive way for assessing specific biological processes in vivo in living organisms. The ability to monitor and track biological structures and processes down to molecular and cellular level and the possibility to probe the development, survival, migration, and differentiation of cells in vivo, has opened up new ways for scientists to investigate the fundamental mechanisms of health and diseases. In this dissertation, novel applications of conventional MR contrast agents to study specific biological structures and processes are demonstrated. First, the potential of manganese enhanced MRI (MEMRI) for in vivo tract tracing and assessment of neuroarchitecture was investigated. Manganese was intracortically infused into the visual cortex along the border of the primary and secondary visual cortex and then imaged 8 and 24 hours later. A dynamic migratory path of manganese from the infusion site through the corpus callosum to the contralateral hemisphere was observed. Also, layer specific enhancement on the contralateral cortex and the connection of the visual cortex with other brain structures were shown and the results were consistent with established anatomical data. Secondly, MEMRI was performed to probe in vivo neuronal changes in the rodent brain following 72-hour rapid eye movement sleep deprivation. Significant reduction in manganese uptake was observed in the cortical and hippocampal region in the sleep deprived animals when compared to the normal group. In particular, the dentate gyrus substructure in the hippocampus exhibited the least uptake. This indicated the functional vulnerability of the hippocampus and the cortex to sleep deprivation. Lastly, in vivo tracking of endogenous neural stem and progenitor cell migration during neurogenesis in neonatal rat brain was performed by micron sized iron oxide particles (MPIO) labeling. Susceptibility weighted imaging was used for image processing to highlight the susceptibility contrast induced by the iron oxide particles. MPIO-labeled cells induced contrast was clearly enhanced in the susceptibility weighted images, particularly at day 3 after MPIO injection in which the MPIO-labeled NPCs became more dispersed in the olfactory bulb. The ventral migratory pathway of endogenous neural stem and progenitor cells, which could not be easily observed in conventional T2*W imaging, couldalsobe detected. Overall, various biological systems and processes have been successfully interrogated using MR contrast agents. Through these studies, the versatility and power of molecular and cellular MRI have been demonstrated. Looking ahead, the rapid development and combination of different molecular and cellular imaging techniques would certainly revolutionize the way we study health and diseases. In the end, this could foster our understanding of basic life sciences and hence improve the quality of healthcare.
published_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jugniot, Natacha. „Molecular imaging of serine protease activity-driven pathologies by magnetic resonance“. Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0141/document.

Der volle Inhalt der Quelle
Annotation:
Ce travail porte sur le développement de sondes peptidiques pour le suivi de la protéolyse par spectroscopie de résonance paramagnétique électronique (RPE) et pour l'imagerie in vivo par résonance magnétique rehaussée de l’effet Overhauser (OMRI). Plus précisément, ce travail étudie pour la première fois une famille d’agents d’imagerie appelée « nitroxyde à déplacement de raies spectrales » spécifique d’activités enzymatiques. L'activité protéolytique, entraînant un décalage de 5 G dans les constantes de couplages hyperfins, permet une quantification individuelle des espèces substrat et produit par RPE et une excitation sélective par OMRI. Trois substrats ont été élaborés, montrant une spécificité enzymatique pour l’élastase du neutrophile (NE) (MeO-Suc-Ala-Ala-Pro-Val-Nitroxyde & Suc-Ala-Ala-Pro-Val-Nitroxyde), et pour la chymotrypsine et la cathepsine G (Suc-Ala-Ala-Pro-Phe-Nitroxyde). Les constantes enzymatiques ont montré de bonnes valeurs avec globalement, Km = 28 ± 25 µM et kcat = 19 ± 3 s-1. Ex vivo, l’utilisation des substrats NE en OMRI a révélé un contraste élevé dans les lavages broncho-alvéolaires de souris sous stimulus inflammatoire. Les rehaussements de signaux IRM sont en corrélation avec la sévérité de l’inflammation. L'irradiation à la fréquence RPE de 5425,6 MHz a permis d'accéder à la bio-distribution des substrats in vivo et pourrait ainsi servir d’outil diagnostic. Les perspectives à moyen terme de ce travail reposent sur le développement de l’OMRI à très faibles champs magnétiques en vue d’une application chez l’homme
This work focuses on substrate-based probes for proteolysis monitoring by Electron Paramagnetic Resonance spectroscopy (EPR) and for in vivo imaging by Overhauser-enhanced Magnetic Resonance (OMRI). More precisely, this work investigates for the first time a family of MRI agents named “line-shifting nitroxide” specific for proteolytic activities. Proteolytic action results in a shift of 5 G in EPR hyperfine coupling constants allowing individual quantification of substrate and product species by EPR and selective excitation by OMRI. Three substrates were worked out, showing enzymatic specificity for neutrophil elastase (MeO-Suc-Ala-Ala-Pro-Val-Nitroxide & Suc-Ala-Ala-Pro-Val-Nitroxide), and for Chymotrypsin/Cathepsin G (Suc-Ala-Ala-Pro-Phe-Nitroxide). Enzymatic constants were remarkably good with globally Km = 28 ± 25 µM and kcat = 19 ± 3 s-1. Ex vivo, the use of NE substrates in OMRI revealed a high contrast in bronchoalveolar lavages of mice under inflammatory stimulus. MRI signal enhancements correlate with the severity of inflammation. Irradiation at the RPE frequency of 5425.6 MHz provided access to the bio-distribution of substrates in vivo and could thus serve as a diagnostic tool. The medium-term perspectives of this work are based on the development of OMRI with very low magnetic fields for human application
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Molecular magnetic resonance imaging"

1

Awojoyogbe, Bamidele O., und Michael O. Dada. Digital Molecular Magnetic Resonance Imaging. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6370-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Modo, Michel Mathias Jeannot Joseph. und Bulte Jeff W. M, Hrsg. Molecular and cellular MR imaging. Boca Raton: CRC Press, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Edmund, Kim E., und Jackson E. F. 1961-, Hrsg. Molecular imaging in oncology: PET, MRI, and MRS. Berlin: Springer, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dada, Michael O., und Bamidele O. Awojoyogbe. Computational Molecular Magnetic Resonance Imaging for Neuro-oncology. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76728-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

S, Suri Jasjit, Hrsg. Plaque imaging: Pixel to molecular level. Amsterdam: IOS Press, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pietro, Carretta, und Lascialfari Alessandra, Hrsg. NMR-MRI, þSR and Mössbauer spectroscopies in molecular magnets. Milano: Springer, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Berliner, Lawrence J. NMR of Paramagnetic Molecules. Boston, MA: Springer US, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Prasad, Pottumarthi V., Hrsg. Magnetic Resonance Imaging. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1597450103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zuurbier, Ria, Johan Nahuis, Sija Geers-van Gemeren, José Dol-Jansen und Tom Dam, Hrsg. Magnetic Resonance Imaging. Houten: Bohn Stafleu van Loghum, 2017. http://dx.doi.org/10.1007/978-90-368-1934-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sigal, Robert, D. Doyon, Ph Halimi und H. Atlan. Magnetic Resonance Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73037-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Molecular magnetic resonance imaging"

1

Botnar, René M., W. Yong Kim, Elmar Spuentrup, Tim Leiner, George Katsimaglis, Michael T. Johnstone, Matthias Stuber und Warren J. Manning. „Magnetic resonance imaging of atherosclerosis: classical and molecular imaging“. In Cardiovascular Magnetic Resonance, 243–55. Heidelberg: Steinkopff, 2004. http://dx.doi.org/10.1007/978-3-7985-1932-9_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Burtea, Carmen, Sophie Laurent, Luce Vander Elst und Robert N. Muller. „Contrast Agents: Magnetic Resonance“. In Molecular Imaging I, 135–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schaeffter, Tobias, und Hannes Dahnke. „Magnetic Resonance Imaging and Spectroscopy“. In Molecular Imaging I, 75–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Neubauer, Anne Morawski, Patrick Winter, Shelton Caruthers, Gregory Lanza und Samuel A. Wickline. „Magnetic Resonance Molecular Imaging and Targeted Therapeutics“. In Cardiovascular Magnetic Resonance Imaging, 649–72. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-306-6_29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chirizzi, Cristina, Valentina Dichiarante, Pierangelo Metrangolo und Francesca Baldelli Bombelli. „Multibranched Superfluorinated Molecular Probes for 19F MRI“. In Fluorine Magnetic Resonance Imaging, 61–82. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003530046-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jackson, Edward F. „Principles of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy“. In Targeted Molecular Imaging in Oncology, 30–61. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3505-5_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gauberti, Maxime, Antoine P. Fournier, Denis Vivien und Sara Martinez de Lizarrondo. „Molecular Magnetic Resonance Imaging (mMRI)“. In Preclinical MRI, 315–27. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7531-0_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kluza, Ewelina, Gustav J. Strijkers und Klaas Nicolay. „Multifunctional Magnetic Resonance Imaging Probes“. In Molecular Imaging in Oncology, 151–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10853-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Biegger, Philipp, Mark E. Ladd und Dorde Komljenovic. „Multifunctional Magnetic Resonance Imaging Probes“. In Molecular Imaging in Oncology, 189–226. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Boretius, Susann, und Jens Frahm. „Manganese-Enhanced Magnetic Resonance Imaging“. In Methods in Molecular Biology, 531–68. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-219-9_28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Molecular magnetic resonance imaging"

1

Hengerer, A. „Molecular Magnetic Resonance Imaging“. In 2nd International University of Malaya Research Imaging Symposium (UMRIS) 2005: Fundamentals of Molecular Imaging. Kuala Lumpur, Malaysia: Department of Biomedical Imaging, University of Malaya, 2005. http://dx.doi.org/10.2349/biij.1.1.e7-53.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Barker, Alex J., Brant Cage, Stephen Russek, Ruchira Garg, Robin Shandas und Conrad R. Stoldt. „Tailored Nanoscale Contrast Agents for Magnetic Resonance Imaging“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81503.

Der volle Inhalt der Quelle
Annotation:
Two potential molecular imaging vectors are investigated for material properties and magnetic resonance imaging (MRI) contrast improvement. Monodisperse magnetite (Fe3O4) nanocrystals ranging in size from 7 to 22 nm are solvothermally synthesized by thermolysis of Fe(III) acetylacetonate (Fe(AcAc)3) both with and without the use of heptanoic acid (HA) as a capping ligand. For the resulting Fe3O4 nanocrystals, X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and superconducting quantum interference device magnetometry (SQUID) is used to identify the average particle size, monodispersity, crystal symmetry, and magnetic properties of the ensembles as a function of time. The characterization study indicates that the HA synthesis route at 3 hours produced nanoparticles with the greatest magnetic anisotropy (15.8 × 104 J/m3). The feasibility of Fe8 single molecule magnets (SMMs) as a potential MRI contrast agent is also examined. SQUID magnetization measurements are used to determine anisotropy and saturation of the potential agents. The effectiveness of the Fe3O4 nanocrystals and Fe8 as potential MRI molecular probes is evaluated by MRI contrast improvement using 1.5 mL phantoms dispersed in de-ionized water. Results indicate that the magnetically optimized Fe3O4 nanocrystals and Fe8 SMMs hold promise for use as contrast agents based on the reported MRI images and solution phase T1/T2 shortening.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Goyal, Sachin, Can Zhao, Amod Jog, Jerry L. Prince und Aaron Carass. „Improving self super resolution in magnetic resonance images“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor Gimi und Andrzej Krol. SPIE, 2018. http://dx.doi.org/10.1117/12.2295366.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lei, Yang, Bing Ji, Tian Liu, Walter J. Curran, Hui Mao und Xiaofeng Yang. „Deep learning-based denoising for magnetic resonance spectroscopy signals“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580988.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chang, Chih-Wei, Matt Goette, Nadja Kadom, Yinan Wang, Jacob Wynne, Tonghe Wang, Tian Liu et al. „Quantification of radiation damage for proton craniospinal irradiation using magnetic resonance imaging“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2023. http://dx.doi.org/10.1117/12.2653665.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Matheson, Alexander M., Grace Parraga und Ian A. Cunningham. „A linear systems description of multi-compartment pulmonary 129Xe magnetic resonance imaging methods“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jeong, Jiwoong J., Yang Lei, Karen Xu, Tian Liu, Hyunsuk Shim, Walter J. Curran, Hui-Kuo Shu und Xiaofeng Yang. „Deep learning-based brain tumor bed segmentation for dynamic magnetic resonance perfusion imaging“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580792.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stuker, Florian, Christof Baltes, Katerina Dikaiou, Divya Vats, Lucio Carrara, Edoardo Charbon, Jorge Ripoll und Markus Rudin. „A Novel Hybrid Imaging System for Simultaneous Fluorescence Molecular Tomography and Magnetic Resonance Imaging“. In Biomedical Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/biomed.2010.btud1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pereira, Danilo R., Larissa Ganaha, Simone Appenzeller und Leticia Rittner. „Open-source toolbox for analysis and spectra quality control of magnetic resonance spectroscopic imaging“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2582186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Moreno, Ramon A., Marina F. S. de Sá Rebelo, Talles Carvalho, Antonildes N. Assunção, Roberto N. Dantas, Renata do Val, Angela S. Marin, Adriano Bordignom, Cesar H. Nomura und Marco A. Gutierrez. „A combined deep-learning approach to fully automatic left ventricle segmentation in cardiac magnetic resonance imaging“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor Gimi und Andrzej Krol. SPIE, 2019. http://dx.doi.org/10.1117/12.2512895.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Molecular magnetic resonance imaging"

1

Bar-Shir, Amnon. Novel molecular architectures for “multicolor” magnetic resonance imaging. The Israel Chemical Society, Januar 2023. http://dx.doi.org/10.51167/ice000017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Russek, Stephen E. Magnetic Resonance Imaging Biomarker Calibration Service:. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.sp.250-100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schweizer, M. Developments in boron magnetic resonance imaging (MRI). Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/421332.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schmidt, D. M., und M. A. Espy. Low-field magnetic resonance imaging of gases. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/674672.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bronskill, Michael J., Paul L. Carson, Steve Einstein, Michael Koshinen, Margit Lassen, Seong Ki Mun, William Pavlicek et al. Site Planning for Magnetic Resonance Imaging Systems. AAPM, 1986. http://dx.doi.org/10.37206/19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Budakian, Raffi. Nanometer-Scale Force Detected Nuclear Magnetic Resonance Imaging. Fort Belvoir, VA: Defense Technical Information Center, Januar 2013. http://dx.doi.org/10.21236/ada591583.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Haslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI Knowledge, März 2021. http://dx.doi.org/10.18591/bjuik.0731.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Haslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI knowledge, März 2021. http://dx.doi.org/10.18591/bjuik.0159.v2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Schmidt, D. M., J. S. George, S. I. Penttila und A. Caprihan. Nuclear magnetic resonance imaging with hyper-polarized noble gases. Office of Scientific and Technical Information (OSTI), Oktober 1997. http://dx.doi.org/10.2172/534499.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Botto, R. E., und G. D. Cody. Magnetic resonance imaging of solvent transport in polymer networks. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/26588.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie