Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Molecular magnetic resonance imaging“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Molecular magnetic resonance imaging" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Molecular magnetic resonance imaging"
Modo, Mike, und Steve C. R. Williams. „Molecular Imaging by Magnetic Resonance Imaging“. Rivista di Neuroradiologia 16, Nr. 2_suppl_part2 (September 2003): 23–27. http://dx.doi.org/10.1177/1971400903016sp207.
Der volle Inhalt der QuelleSosnovik, David E. „Molecular Imaging in Cardiovascular Magnetic Resonance Imaging“. Topics in Magnetic Resonance Imaging 19, Nr. 1 (Februar 2008): 59–68. http://dx.doi.org/10.1097/rmr.0b013e318176c57b.
Der volle Inhalt der QuelleTerreno, Enzo, Daniela Delli Castelli, Alessandra Viale und Silvio Aime. „Challenges for Molecular Magnetic Resonance Imaging“. Chemical Reviews 110, Nr. 5 (12.05.2010): 3019–42. http://dx.doi.org/10.1021/cr100025t.
Der volle Inhalt der QuelleLANZA, G., P. WINTER, S. CARUTHERS, A. MORAWSKI, A. SCHMIEDER, K. CROWDER und S. WICKLINE. „Magnetic resonance molecular imaging with nanoparticles“. Journal of Nuclear Cardiology 11, Nr. 6 (Dezember 2004): 733–43. http://dx.doi.org/10.1016/j.nuclcard.2004.09.002.
Der volle Inhalt der QuelleCurtis, R. J. „Magnetic resonance imaging.“ Annals of the Rheumatic Diseases 50, Nr. 1 (01.01.1991): 66. http://dx.doi.org/10.1136/ard.50.1.66-c.
Der volle Inhalt der QuelleSosnovik, David E., Matthias Nahrendorf und Ralph Weissleder. „Molecular Magnetic Resonance Imaging in Cardiovascular Medicine“. Circulation 115, Nr. 15 (17.04.2007): 2076–86. http://dx.doi.org/10.1161/circulationaha.106.658930.
Der volle Inhalt der QuellePeterson, Eric C., und Louis J. Kim. „Magnetic Resonance Imaging at the Molecular Level“. World Neurosurgery 73, Nr. 6 (Juni 2010): 604–5. http://dx.doi.org/10.1016/j.wneu.2010.06.044.
Der volle Inhalt der QuelleWinter, Patrick M., und Michael D. Taylor. „Magnetic Resonance Molecular Imaging of Plaque Angiogenesis“. Current Cardiovascular Imaging Reports 5, Nr. 1 (03.01.2012): 36–44. http://dx.doi.org/10.1007/s12410-011-9121-5.
Der volle Inhalt der QuelleRothwell, William P. „Nuclear magnetic resonance imaging“. Applied Optics 24, Nr. 23 (01.12.1985): 3958. http://dx.doi.org/10.1364/ao.24.003958.
Der volle Inhalt der QuelleGoldman, M. „Nuclear Magnetic Resonance Imaging“. Physica Scripta T19B (01.01.1987): 476–80. http://dx.doi.org/10.1088/0031-8949/1987/t19b/025.
Der volle Inhalt der QuelleDissertationen zum Thema "Molecular magnetic resonance imaging"
Zhu, Bo Ph D. Massachusetts Institute of Technology. „Acoustical-molecular techniques for magnetic resonance imaging“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103499.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Magnetic resonance imaging (MRI) is a remarkably flexible diagnostic platform due to the variety of clinically relevant physical, chemical, and biological phenomena it can detect. In addition to the host of endogenous contrast mechanisms available, MRI functionality can be further extended by incorporating exogenous factors to attain sensitivity to new classes of indicators. Molecular imaging with targeted injectable contrast agents and MR elastography with externally delivered acoustic vibrations are two such advancements with increasing clinical significance. Conventionally employed separately, this work explores how exogenous components can interact cooperatively in imaging disease and may be combined to more accurately stage disease progression and generate novel mechanisms of MR contrast, using contrast agents and acoustic stimulation as model systems. We imaged hepatic fibrosis in a rat model and found that collagen-binding paramagnetic contrast agents and shear wave MR elastography had partially uncorrelated staging abilities, due to the disease condition's differential timing of collagen production and its stiff cross-linking. This complementary feature enabled us to form a composite multivariate model incorporating both methods which exhibited superior diagnostic staging over all stages of fibrosis progression. We then integrated acoustics and molecular-targeting agents at a deeper level in the form of a novel contrast mechanism, Acoustically Induced Rotary Saturation (AIRS), which switches "on" and "off" the image contrast due to the agents by adjusting the resonance of the spin-lock condition. This contrast modulation ability provides unprecedented clarity in identifying contrast agent presence as well as sensitive and quantitative statistical measurements via rapidly modulated block design experiments. Finally, we extend the AIRS method and show preliminary results for Saturation Harmonic Induced Rotary Saturation (SHIRS), which detects the second harmonic time-oscillation of iron oxide nanoparticles' magnetization in response to an oscillating applied field around B0. We also illustrate an exploratory method of selectively imaging iron oxide agents by diffusion kurtosis measures of freely diffusing water in solutions of magnetic nanoparticles.
by Bo Zhu.
Ph. D. in Biomedical Engineering
Zurkiya, Omar. „Magnetic Resonance Molecular Imaging Using Iron Oxide Nanoparticles“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19848.
Der volle Inhalt der QuelleDuce, Suzanne Louise. „Nuclear magnetic resonance imaging and spectroscopy of food“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240194.
Der volle Inhalt der QuelleGallagher, F. A. „Molecular imaging of tumours using dynamic nuclear polarization and magnetic resonance imaging“. Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599277.
Der volle Inhalt der QuelleGAMBINO, GIUSEPPE. „High-relaxivity systems and molecular imaging probes for Magnetic Resonance Imaging applications“. Doctoral thesis, Università del Piemonte Orientale, 2014. http://hdl.handle.net/11579/46171.
Der volle Inhalt der QuelleChow, Mei-kwan April, und 周美君. „Cellular, molecular and metabolic magnetic resonance imaging: techniques and applications“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44901148.
Der volle Inhalt der QuelleFan, Shujuan, und 樊淑娟. „In vivo cellular and molecular magnetic resonance imaging of brain functions and injuries“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50491489.
Der volle Inhalt der QuelleReynolds, Peter Robert. „Magnetic resonance imaging of cellular and molecular events in inflammation“. Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487305.
Der volle Inhalt der QuelleLee, Yik-hin, und 李易軒. „Molecular and cellular investigation of rodent brains by magnetic resonance imaging“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49618118.
Der volle Inhalt der Quellepublished_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
Jugniot, Natacha. „Molecular imaging of serine protease activity-driven pathologies by magnetic resonance“. Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0141/document.
Der volle Inhalt der QuelleThis work focuses on substrate-based probes for proteolysis monitoring by Electron Paramagnetic Resonance spectroscopy (EPR) and for in vivo imaging by Overhauser-enhanced Magnetic Resonance (OMRI). More precisely, this work investigates for the first time a family of MRI agents named “line-shifting nitroxide” specific for proteolytic activities. Proteolytic action results in a shift of 5 G in EPR hyperfine coupling constants allowing individual quantification of substrate and product species by EPR and selective excitation by OMRI. Three substrates were worked out, showing enzymatic specificity for neutrophil elastase (MeO-Suc-Ala-Ala-Pro-Val-Nitroxide & Suc-Ala-Ala-Pro-Val-Nitroxide), and for Chymotrypsin/Cathepsin G (Suc-Ala-Ala-Pro-Phe-Nitroxide). Enzymatic constants were remarkably good with globally Km = 28 ± 25 µM and kcat = 19 ± 3 s-1. Ex vivo, the use of NE substrates in OMRI revealed a high contrast in bronchoalveolar lavages of mice under inflammatory stimulus. MRI signal enhancements correlate with the severity of inflammation. Irradiation at the RPE frequency of 5425.6 MHz provided access to the bio-distribution of substrates in vivo and could thus serve as a diagnostic tool. The medium-term perspectives of this work are based on the development of OMRI with very low magnetic fields for human application
Bücher zum Thema "Molecular magnetic resonance imaging"
Awojoyogbe, Bamidele O., und Michael O. Dada. Digital Molecular Magnetic Resonance Imaging. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6370-2.
Der volle Inhalt der QuelleModo, Michel Mathias Jeannot Joseph. und Bulte Jeff W. M, Hrsg. Molecular and cellular MR imaging. Boca Raton: CRC Press, 2007.
Den vollen Inhalt der Quelle findenEdmund, Kim E., und Jackson E. F. 1961-, Hrsg. Molecular imaging in oncology: PET, MRI, and MRS. Berlin: Springer, 1999.
Den vollen Inhalt der Quelle findenDada, Michael O., und Bamidele O. Awojoyogbe. Computational Molecular Magnetic Resonance Imaging for Neuro-oncology. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76728-0.
Der volle Inhalt der QuelleS, Suri Jasjit, Hrsg. Plaque imaging: Pixel to molecular level. Amsterdam: IOS Press, 2005.
Den vollen Inhalt der Quelle findenPietro, Carretta, und Lascialfari Alessandra, Hrsg. NMR-MRI, þSR and Mössbauer spectroscopies in molecular magnets. Milano: Springer, 2007.
Den vollen Inhalt der Quelle findenBerliner, Lawrence J. NMR of Paramagnetic Molecules. Boston, MA: Springer US, 1993.
Den vollen Inhalt der Quelle findenPrasad, Pottumarthi V., Hrsg. Magnetic Resonance Imaging. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1597450103.
Der volle Inhalt der QuelleZuurbier, Ria, Johan Nahuis, Sija Geers-van Gemeren, José Dol-Jansen und Tom Dam, Hrsg. Magnetic Resonance Imaging. Houten: Bohn Stafleu van Loghum, 2017. http://dx.doi.org/10.1007/978-90-368-1934-3.
Der volle Inhalt der QuelleSigal, Robert, D. Doyon, Ph Halimi und H. Atlan. Magnetic Resonance Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73037-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Molecular magnetic resonance imaging"
Botnar, René M., W. Yong Kim, Elmar Spuentrup, Tim Leiner, George Katsimaglis, Michael T. Johnstone, Matthias Stuber und Warren J. Manning. „Magnetic resonance imaging of atherosclerosis: classical and molecular imaging“. In Cardiovascular Magnetic Resonance, 243–55. Heidelberg: Steinkopff, 2004. http://dx.doi.org/10.1007/978-3-7985-1932-9_24.
Der volle Inhalt der QuelleBurtea, Carmen, Sophie Laurent, Luce Vander Elst und Robert N. Muller. „Contrast Agents: Magnetic Resonance“. In Molecular Imaging I, 135–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_7.
Der volle Inhalt der QuelleSchaeffter, Tobias, und Hannes Dahnke. „Magnetic Resonance Imaging and Spectroscopy“. In Molecular Imaging I, 75–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_4.
Der volle Inhalt der QuelleNeubauer, Anne Morawski, Patrick Winter, Shelton Caruthers, Gregory Lanza und Samuel A. Wickline. „Magnetic Resonance Molecular Imaging and Targeted Therapeutics“. In Cardiovascular Magnetic Resonance Imaging, 649–72. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-306-6_29.
Der volle Inhalt der QuelleChirizzi, Cristina, Valentina Dichiarante, Pierangelo Metrangolo und Francesca Baldelli Bombelli. „Multibranched Superfluorinated Molecular Probes for 19F MRI“. In Fluorine Magnetic Resonance Imaging, 61–82. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003530046-3.
Der volle Inhalt der QuelleJackson, Edward F. „Principles of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy“. In Targeted Molecular Imaging in Oncology, 30–61. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3505-5_4.
Der volle Inhalt der QuelleGauberti, Maxime, Antoine P. Fournier, Denis Vivien und Sara Martinez de Lizarrondo. „Molecular Magnetic Resonance Imaging (mMRI)“. In Preclinical MRI, 315–27. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7531-0_19.
Der volle Inhalt der QuelleKluza, Ewelina, Gustav J. Strijkers und Klaas Nicolay. „Multifunctional Magnetic Resonance Imaging Probes“. In Molecular Imaging in Oncology, 151–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10853-2_5.
Der volle Inhalt der QuelleBiegger, Philipp, Mark E. Ladd und Dorde Komljenovic. „Multifunctional Magnetic Resonance Imaging Probes“. In Molecular Imaging in Oncology, 189–226. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_6.
Der volle Inhalt der QuelleBoretius, Susann, und Jens Frahm. „Manganese-Enhanced Magnetic Resonance Imaging“. In Methods in Molecular Biology, 531–68. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-219-9_28.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Molecular magnetic resonance imaging"
Hengerer, A. „Molecular Magnetic Resonance Imaging“. In 2nd International University of Malaya Research Imaging Symposium (UMRIS) 2005: Fundamentals of Molecular Imaging. Kuala Lumpur, Malaysia: Department of Biomedical Imaging, University of Malaya, 2005. http://dx.doi.org/10.2349/biij.1.1.e7-53.
Der volle Inhalt der QuelleBarker, Alex J., Brant Cage, Stephen Russek, Ruchira Garg, Robin Shandas und Conrad R. Stoldt. „Tailored Nanoscale Contrast Agents for Magnetic Resonance Imaging“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81503.
Der volle Inhalt der QuelleGoyal, Sachin, Can Zhao, Amod Jog, Jerry L. Prince und Aaron Carass. „Improving self super resolution in magnetic resonance images“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor Gimi und Andrzej Krol. SPIE, 2018. http://dx.doi.org/10.1117/12.2295366.
Der volle Inhalt der QuelleLei, Yang, Bing Ji, Tian Liu, Walter J. Curran, Hui Mao und Xiaofeng Yang. „Deep learning-based denoising for magnetic resonance spectroscopy signals“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580988.
Der volle Inhalt der QuelleChang, Chih-Wei, Matt Goette, Nadja Kadom, Yinan Wang, Jacob Wynne, Tonghe Wang, Tian Liu et al. „Quantification of radiation damage for proton craniospinal irradiation using magnetic resonance imaging“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2023. http://dx.doi.org/10.1117/12.2653665.
Der volle Inhalt der QuelleMatheson, Alexander M., Grace Parraga und Ian A. Cunningham. „A linear systems description of multi-compartment pulmonary 129Xe magnetic resonance imaging methods“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580947.
Der volle Inhalt der QuelleJeong, Jiwoong J., Yang Lei, Karen Xu, Tian Liu, Hyunsuk Shim, Walter J. Curran, Hui-Kuo Shu und Xiaofeng Yang. „Deep learning-based brain tumor bed segmentation for dynamic magnetic resonance perfusion imaging“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580792.
Der volle Inhalt der QuelleStuker, Florian, Christof Baltes, Katerina Dikaiou, Divya Vats, Lucio Carrara, Edoardo Charbon, Jorge Ripoll und Markus Rudin. „A Novel Hybrid Imaging System for Simultaneous Fluorescence Molecular Tomography and Magnetic Resonance Imaging“. In Biomedical Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/biomed.2010.btud1.
Der volle Inhalt der QuellePereira, Danilo R., Larissa Ganaha, Simone Appenzeller und Leticia Rittner. „Open-source toolbox for analysis and spectra quality control of magnetic resonance spectroscopic imaging“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2582186.
Der volle Inhalt der QuelleMoreno, Ramon A., Marina F. S. de Sá Rebelo, Talles Carvalho, Antonildes N. Assunção, Roberto N. Dantas, Renata do Val, Angela S. Marin, Adriano Bordignom, Cesar H. Nomura und Marco A. Gutierrez. „A combined deep-learning approach to fully automatic left ventricle segmentation in cardiac magnetic resonance imaging“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor Gimi und Andrzej Krol. SPIE, 2019. http://dx.doi.org/10.1117/12.2512895.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Molecular magnetic resonance imaging"
Bar-Shir, Amnon. Novel molecular architectures for “multicolor” magnetic resonance imaging. The Israel Chemical Society, Januar 2023. http://dx.doi.org/10.51167/ice000017.
Der volle Inhalt der QuelleRussek, Stephen E. Magnetic Resonance Imaging Biomarker Calibration Service:. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.sp.250-100.
Der volle Inhalt der QuelleSchweizer, M. Developments in boron magnetic resonance imaging (MRI). Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/421332.
Der volle Inhalt der QuelleSchmidt, D. M., und M. A. Espy. Low-field magnetic resonance imaging of gases. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/674672.
Der volle Inhalt der QuelleBronskill, Michael J., Paul L. Carson, Steve Einstein, Michael Koshinen, Margit Lassen, Seong Ki Mun, William Pavlicek et al. Site Planning for Magnetic Resonance Imaging Systems. AAPM, 1986. http://dx.doi.org/10.37206/19.
Der volle Inhalt der QuelleBudakian, Raffi. Nanometer-Scale Force Detected Nuclear Magnetic Resonance Imaging. Fort Belvoir, VA: Defense Technical Information Center, Januar 2013. http://dx.doi.org/10.21236/ada591583.
Der volle Inhalt der QuelleHaslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI Knowledge, März 2021. http://dx.doi.org/10.18591/bjuik.0731.
Der volle Inhalt der QuelleHaslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI knowledge, März 2021. http://dx.doi.org/10.18591/bjuik.0159.v2.
Der volle Inhalt der QuelleSchmidt, D. M., J. S. George, S. I. Penttila und A. Caprihan. Nuclear magnetic resonance imaging with hyper-polarized noble gases. Office of Scientific and Technical Information (OSTI), Oktober 1997. http://dx.doi.org/10.2172/534499.
Der volle Inhalt der QuelleBotto, R. E., und G. D. Cody. Magnetic resonance imaging of solvent transport in polymer networks. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/26588.
Der volle Inhalt der Quelle