Auswahl der wissenschaftlichen Literatur zum Thema „Molecular hydrogen“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Molecular hydrogen" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Molecular hydrogen"

1

Habart, Emilie, Malcolm Walmsley, Laurent Verstraete, Stephanie Cazaux, Roberto Maiolino, Pierre Cox, Francois Boulanger und Guillaume Pineau Des Forêts. „Molecular Hydrogen“. Space Science Reviews 119, Nr. 1-4 (August 2005): 71–91. http://dx.doi.org/10.1007/s11214-005-8062-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Saldan, Ivan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn und Oleksandr Reshetnyak. „Physical Sorption of Molecular Hydrogen by Microporous Organic Polymers“. Chemistry & Chemical Technology 13, Nr. 1 (05.03.2019): 85–94. http://dx.doi.org/10.23939/chcht13.01.085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Xinyu, Huiyuan Wang, Hongmin Zhang, Tianxi Yang, Bin Zhao und Juan Yan. „Investigation of the Impact of Hydrogen Bonding Degree in Long Single-Stranded DNA (ssDNA) Generated with Dual Rolling Circle Amplification (RCA) on the Preparation and Performance of DNA Hydrogels“. Biosensors 13, Nr. 7 (23.07.2023): 755. http://dx.doi.org/10.3390/bios13070755.

Der volle Inhalt der Quelle
Annotation:
DNA hydrogels have gained significant attention in recent years as one of the most promising functional polymer materials. To broaden their applications, it is critical to develop efficient methods for the preparation of bulk-scale DNA hydrogels with adjustable mechanical properties. Herein, we introduce a straightforward and efficient molecular design approach to producing physically pure DNA hydrogel and controlling its mechanical properties by adjusting the degree of hydrogen bonding in ultralong single-stranded DNA (ssDNA) precursors, which were generated using a dual rolling circle amplification (RCA)-based strategy. The effect of hydrogen bonding degree on the performance of DNA hydrogels was thoroughly investigated by analyzing the preparation process, morphology, rheology, microstructure, and entrapment efficiency of the hydrogels for Au nanoparticles (AuNPs)–BSA. Our results demonstrate that DNA hydrogels can be formed at 25 °C with simple vortex mixing in less than 10 s. The experimental results also indicate that a higher degree of hydrogen bonding in the precursor DNA resulted in stronger internal interaction forces, a more complex internal network of the hydrogel, a denser hydrogel, improved mechanical properties, and enhanced entrapment efficiency. This study intuitively demonstrates the effect of hydrogen bonding on the preparation and properties of DNA hydrogels. The method and results presented in this study are of great significance for improving the synthesis efficiency and economy of DNA hydrogels, enhancing and adjusting the overall quality and performance of the hydrogel, and expanding the application field of DNA hydrogels.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kalantaryan, O. V. „Ionoluminescence of silica bombarded by 420 keV molecular hydrogen ions“. Functional Materials 20, Nr. 4 (25.12.2013): 462–65. http://dx.doi.org/10.15407/fm20.04.462.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kalantaryan, O. „Fast ion induced luminescence of silica implanted by molecular hydrogen“. Functional materials 21, Nr. 1 (30.03.2014): 26–30. http://dx.doi.org/10.15407/fm21.01.26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schechter, I., R. Kosloff und R. D. Levine. „Insertion vs. abstraction in the atomic hydrogen + molecular hydrogen .fwdarw. molecular hydrogen + atomic hydrogen exchange reaction“. Journal of Physical Chemistry 90, Nr. 6 (März 1986): 1006–8. http://dx.doi.org/10.1021/j100278a009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Vorob’ev, V. S., und S. P. Malyshenko. „Superfluid molecular hydrogen“. Journal of Experimental and Theoretical Physics Letters 71, Nr. 1 (Januar 2000): 39–41. http://dx.doi.org/10.1134/1.568273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Graydon, Oliver. „Probing molecular hydrogen“. Nature Photonics 8, Nr. 5 (25.04.2014): 350. http://dx.doi.org/10.1038/nphoton.2014.99.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cammack, Richard. „Splitting molecular hydrogen“. Nature 373, Nr. 6515 (Februar 1995): 556–57. http://dx.doi.org/10.1038/373556a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Borondo, F., F. Mart̆n und M. Yánez. „Molecular mechanism for hydrogen-hydrogen excitation collisions“. Physical Review A 36, Nr. 8 (01.10.1987): 3630–38. http://dx.doi.org/10.1103/physreva.36.3630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Molecular hydrogen"

1

Wilkinson, David Adam. „Molecular hydrogen in galaxies“. Thesis, Durham University, 1987. http://etheses.dur.ac.uk/6657/.

Der volle Inhalt der Quelle
Annotation:
This study aims to understand the key role played by molecular hydrogen in the evolution of galaxies, with a view to constraining its radial distribution in the Galaxy and the CO→H(_2) conversion factor α(_20).The star formation rate is shown to be correlated with the surface density of H(_2). A correlation between the molecular hydrogen fraction and the metallicity of a region allows the time evolution of H(_2) to be described. This leads to a modified 'Schmidt Law' of the SFR which explains quite naturally the production of galactic metallicity gradients and the constancy of the SFR in the absence of infall. A consistent closed model of the chemical evolution of the Galaxy is proposed to solve the G-dwarf problem, the stellar age-metallicity relation and the metallicity gradient, leading to the prediction of some initial amount of pre-disc processing of gas into visible and dark matter. It is found that a constant yield of metals is more appropriate than a yield proportional to metallicity. Possible time variations of the returned fraction, the dark matter fraction and the SFR are also studied. For consistency, we suggest that dark matter in the solar neighbourhood could be totally baryonic provided the Miller-Scalo IMF is modified at the lower end, that is, the dark matter resides in low mass stars or brown dwarfs. The production of metallicity gradients in spiral galaxies is shown to be a direct consequence of the radial variation of the total surface density of matter and the age of the disc. The role of molecular gas in the evolution of the Oort Cloud of comets is examined. It is shown that comet showers with a mean interval of ̴̱ 30My cannot be produced using perturbations of the Oort Cloud by known stars or molecular clouds. If there is indeed an apparent 30My periodicity in the terrestrial mass extinction and geological records, we argue that astronomically induced processes are unlikely to be the primary cause. Evidence is presented that the lifetime of the molecular gas phase is ≤ 2.lO(_8)y, and arguments, particularly from CO observations of the Virgo galaxy cluster, favouring longer lifetimes are shown to be not well founded. We suggest that the ICM in Virgo reduces the value of α(_20) as compared to isolated galaxies. From the above considerations, the radial distribution of in the Galaxy is derived and shown to agree in the inner Galaxy with that derived from ɤ-ray analysis. In the solar neighbourhood we find α(_20) = 2.5±0.5, and present evidence that α(_20) varies as a function of Galactocentric radius and from galaxy to galaxy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Li, Chengguang. „Molecular hydrogen in planetary nebulae“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0027/MQ31359.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gatti, Francesco Gilberto. „Hydrogen bond-assembled molecular shuttles“. Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247443.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pérez, Emilio M. „Hydrogen-bonded synthetic molecular machines“. Thesis, University of Edinburgh, 2004. http://hdl.handle.net/1842/15610.

Der volle Inhalt der Quelle
Annotation:
This thesis reports on: 1) the development of two new methods to provoke the translation of the macrocycle along the thread (“shuttling”) in hydrogen bonded, fumaramide-based [2]rotaxanes and 2) the utilization of that movement to provoke a potentially useful response. The fumaramide template is perfectly preorganised to form four intercomponent hydrogen bonds with a benzylic amide macrocycle, affording [2]rotaxanes in “world record” yields. This preorganisation can be disrupted by photo-isomerisation (254 nm) of the E double bond to its Z counterpart. The newly formed maleamide template shows little affinity for the macrocycle. This has previously been exploited to synthesise a light and heat switchable molecular shuttles. A unique tristable molecular shuttle in which the macrocycle can be located in three different “stations” by means of thermal and photochemical stimuli is described in Chapter Two. In Chapter Three an alternative mechanism of shuttling for fumaramide-based molecular shuttles is reported. The reversibility of Diels-Alder chemistry is exploited to synthesise a chemically driven molecular shuttle. A chiral two-station [2]rotaxane in which translational motion of the macrocycle along the thread results in a profound change in its optical properties (CD spectrum) is described in Chapter Four. Finally, a light-switchable optically-addressable molecular shuttle is discussed. A [2]rotaxane with a thread containing a fluorophore and a macrocycle functionalised to quench its fluorescence was synthesised. Shuttling of the macrocycle along the thread switched the fluorescence “on” and “off”.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Onay, Aytun. „Hydrogen Storage Capacity Of Nanosystems: Molecular“. Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609636/index.pdf.

Der volle Inhalt der Quelle
Annotation:
In recent decades, tremendous efforts have been made to obtain high hydrogen storage capacity in a stable configuration. In the literature there are plenty of experimental works investigating different materials for hydrogen storage and their storage values. In the first part of this thesis the available literature data have been collected and tabulated. In addition to the literature survey the hydrogen storage capacity of carbon nanotubes and carbon nanotubes doped with boron nitride (CBN nanotubes) with different chirality have been investigated by performing quantum chemical methods at semiempirical and DFT levels of calculations. It has been found that boron nitrite doping increases the hydrogen storage capacity of carbon nanotubes. Single wall carbon nanotubes (SWNT) can be thought as formed by warping a single graphitic layer into a cylindrical object. SWNTs attract much attention because they have unique electronic properties, very strong structure and high elastic moduli. The systems under study include the structures C(4,4), H2@C(4,4), C(7,0), C(4,0), and the BN doped C(4,4), H2@C(4,4), 2H2@C(4,4), C(7,0), H2@C(7,0), 2H2@C(7,0). Also, we have investigated adsorption and desorption of hydrogen molecules on BN doped coronene models by means of theoretical calculations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Montgomerie, Christine Ann. „Spectroscopy of the hydrogen molecular ion“. Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257936.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Guest, Michael Arthur. „The infrared spectrum of molecular hydrogen“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ray, Mark D. „Precision Lifetime Measurements in Molecular Hydrogen /“. The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487931512617771.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chen, Guo Fu. „The diffusion of muonic hydrogen atoms in hydrogen gas“. W&M ScholarWorks, 1990. https://scholarworks.wm.edu/etd/1539623790.

Der volle Inhalt der Quelle
Annotation:
This experiment measured the time distribution of muonic hydrogen atoms which were formed when negative muons were brought to rest in H{dollar}\sb2{dollar} gas, containing Au target foils, at five pressures (750 mbar, 375 mbar, 188 mbar, 94 mbar and 47 mbar at 4.6 mm foil spacing). A Monte Carlo method is applied for deducing the initial velocity distribution, and preliminary results are obtained. The initial velocity distribution of {dollar}\mu{dollar}H atoms is reasonably well described as a 'Maxwellian' velocity distribution with a mean energy E = 3.4 eV. The corresponding muon mean capture energy is obtained: E{dollar}\sb{lcub}\rm c{rcub}{dollar} {dollar}\approx{dollar} 34 eV for {dollar}\mu{dollar}H atom and E{dollar}\sb{lcub}\rm c{rcub}{dollar} {dollar}\approx{dollar} 68 eV for {dollar}\mu{dollar}H{dollar}\sb2{dollar} molecules. We also find the negative muon capture energy distribution is exponential.;In addition, a significant improvement of the negative muon mean life {dollar}\tau{dollar} in Au is abtained in this experiment.: {dollar}\tau\sb{lcub}\rm Au{rcub}{dollar} = 69.716 {dollar}\pm{dollar} 0.144 ns. The "full decay curve fitting method" which we use in this experiment has an advantage over the previous method in three aspects: (1) We have measured the mean life and determined the time resolution {dollar}\sigma{dollar}(E) of a detector at a particular energy level; (2) We have determined the effective zero time of the decay curve; (3) We have provided a possible way to measure the mean life {dollar}\tau{dollar} when {dollar}\tau{dollar} is less than the time resolution {dollar}\sigma{dollar}(E) of the detector ({dollar}\tau{dollar} {dollar}<{dollar} {dollar}\sigma{dollar}(E)).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chrysostomou, Antonio. „Molecular hydrogen line emission from photodissociation regions“. Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/27794.

Der volle Inhalt der Quelle
Annotation:
The work presented in this thesis is dedicated to the study of the physical properties of photodissociation regions (PDRs), the surface layers of molecular clouds which are irradiated by ultraviolet radiation. The structure of PDRs is investigated with the development of an analytical model which incorporates the essential heating and cooling mechanisms in a PDR. The main parameters in the model are the density and the incident ultraviolet radiation field, above the ambient value in the solar neighbourhood, impinging on the surface (G0) which dissociates the molecules in the PDR. It is demonstrated that when the ratio (n/G0) is high (> 100 cm-3) the attenuation of ultraviolet photons is dominated by H2 self shielding which brings the HI/H2 transition zone close to the surface of the cloud (Av < 1). When the ratio is of order unity then the attenuation of ultraviolet photons is dominated by dust grains in the PDR. In this case, the HI/H2 transition zone occurs at a depth of Av ~ 2 - 3. Images of the PDR in the northern bar of M17 show that there is a spatial coincidence, accurate to ~ 1 arcsec, of the H2 and 3.28 μm emission regions (the 3.28 μm emission being a tracer of the hot edge of the PDR delineated by the HII/HI transition) placing a lower limit to the density in the clumps of 105 cm-3. This coincidence is also observed in other PDR sources (eg. NGC 2023) and can be readily explained if the sources are clumpy. It is not clear in the northern bar of M17, where G0 ~ 10^4, whether shielding by dust or H_2 molecules is dominating the attenuation of ultraviolet photons. A uniform, high density PDR model is sufficient to reproduce the observed H_2 line intensity, however the images clearly reveal structures at the 2 arcsec level suggesting that a clumpy model is a realistic solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Molecular hydrogen"

1

Fukai, Yuh. Molecular Hydrogen for Medicine. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7157-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sun, Xuejun, Shigeo Ohta und Atsunori Nakao, Hrsg. Hydrogen Molecular Biology and Medicine. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9691-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Culhane, Michael. Hydrogen molecules in SN 1987A. [Washington, DC: National Aeronautics and Space Administration, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Julius, Rebek. Hydrogen-bonded capsules: Molecular behavior in small spaces. Hackensack, NJ: World Scientific, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

service), SpringerLink (Online, Hrsg. Molecular networks. Berlin: Springer, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dean, B. Sticking coefficient of molecular and atomic hydrogen on palladium. [S.l.]: [s.n.], 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Conroy-Lewis, Fiona Margaret. Synthesis and reactivity of molecular hydrogen complexes of Ruthenium. Salford: University of Salford, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Barker, D. A. Theoretical studies of hydrogen bonded and weakly bonded molecular complexes. Manchester: UMIST, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

S, Poluėktov N., Hrsg. n-Ėlektrony geteroatomov v vodorodnoĭ svi͡azi i li͡uminest͡sent͡sii. Moskva: "Nauka", 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mingos, D. M. P., 1944-, Hrsg. Supramolecular assembly via hydrogen bonds. Berlin: Springer, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Molecular hydrogen"

1

Habart, Emilie, Malcolm Walmsley, Laurent Verstraete, Stephanie Cazaux, Roberto Maiolino, Pierre Cox, Francois Boulanger und Guillaume Pineau Des Forêts. „Molecular Hydrogen“. In ISO Science Legacy, 71–91. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3844-5_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ashby, M. T. „Molecular Hydrogen Complexes“. In Inorganic Reactions and Methods, 77–79. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145319.ch31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ohtsuka, Toshiaki, Atsushi Nishikata, Masatoshi Sakairi und Koji Fushimi. „Hydrogen Embrittlement and Hydrogen Absorption“. In SpringerBriefs in Molecular Science, 79–96. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6820-1_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Liu, Wenwu, Xuejun Sun und Shigeo Ohta. „Hydrogen Element and Hydrogen Gas“. In Hydrogen Molecular Biology and Medicine, 1–23. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9691-0_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kubas, Gregory J., und Dennis Michael Heinekey. „Activation of Molecular Hydrogen“. In Physical Inorganic Chemistry, 189–245. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470602577.ch5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ward, Michael D. „Charge-Assisted Hydrogen-Bonded Networks“. In Molecular Networks, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/430_2008_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bratko, D., und L. Blum. „A Molecular Model for Aqueous Solutions“. In Hydrogen-Bonded Liquids, 185–96. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3274-9_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bhuyan, Abani K. „Hydrogen Atom Spectra“. In Fundamental Concepts of Molecular Spectroscopy, 37–63. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003293064-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fukai, Yuh. „Development of Molecular Hydrogen Medicine“. In Molecular Hydrogen for Medicine, 13–60. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7157-2_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fukai, Yuh. „The Future of Molecular Hydrogen Medicine“. In Molecular Hydrogen for Medicine, 141–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7157-2_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Molecular hydrogen"

1

Pfenniger, D. „Dark molecular hydrogen“. In Baryons in Dark Matter Halos. Trieste, Italy: Sissa Medialab, 2004. http://dx.doi.org/10.22323/1.014.0087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ludwig, J., H. Rottke und W. Sandner. „Molecular Hydrogen in an Intense Light Field“. In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.fd6.

Der volle Inhalt der Quelle
Annotation:
The dissociation and ionization mechanisms of molecules and molecular ions in a high intensity non-perturbative optical radiation field has attracted much interest experimentally as well as theoretically ([1,2] and refs, cited there). Especially investigations on molecular hydrogen have revealed many new molecule specific high field phenomena originating in the coupled electronic and nuclear degrees of freedom. Zaviyev et al. and Yang et al. found mechanisms like bond-softening dissociation, above threshold dissociation, or multiphoton dissociation to be active in the hydrogen molecular ion [3,4,5]. Also an indication of light-induced vibrational structure in H2+ and D2+ was detected [6]. At the high intensities reached in a focused laser beam finally the molecular ion may become ionized resulting in Coulomb explosion of the remaining bare nuclei. Hints pointing to this mechanism to be active have been found in H+ and D+ kinetic energy distributions [2,6].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

McGrath, C. „Fragmentation of 50–100 keV molecular hydrogen ions in collision with a molecular hydrogen target“. In The CAARI 2000: Sixteenth international conference on the application of accelerators in research and industry. AIP, 2001. http://dx.doi.org/10.1063/1.1395273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pullen, Gregory, Yuan-Pern Lee, Karolina Haupa, Gary Douberly und Peter Franke. „TUNNELING REACTIONS OF HYDROGEN ADDITION TO PROPENE IN A SOLID PARA-HYDROGEN MATRIX“. In 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.ff08.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dilshard, Rahima, John R. Dixon, William O. George, Robert A. Lewis, Brian Minty und Roger Upton. „Molecular modeling of hydrogen bonding interactions“. In Fourier Transform Spectroscopy: Ninth International Conference, herausgegeben von John E. Bertie und Hal Wieser. SPIE, 1994. http://dx.doi.org/10.1117/12.166742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Taqqu, D. „Molecular effects in muonic hydrogen cascade“. In AIP Conference Proceedings Volume 181. AIP, 1988. http://dx.doi.org/10.1063/1.37899.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cheng, Yan, Michael Chini, Xiaowei Wang, Yi Wu und Zenghu Chang. „Attosecond Transient Absorption in Molecular Hydrogen“. In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.fm2b.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Heuser, S., M. Sabbar, R. Boge, C. Cirelli und U. Keller. „Photoionization Time Delay in Molecular Hydrogen“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/up.2014.09.wed.c.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Møller, Kristian, Henrik Kjaergaard, Anne Hansen und Camilla Tram. „HYDROPEROXIDES AS HYDROGEN BOND DONORS“. In 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2016. http://dx.doi.org/10.15278/isms.2016.ti10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Anderson, David, Aaron Strom und Morgan Balabanoff. „INFRARED SPECTROSCOPIC STUDIES OF ORTHO-PARA CONVERSION IN SOLID HYDROGEN CATALYZED BY HYDROGEN ATOMS“. In 73rd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2018. http://dx.doi.org/10.15278/isms.2018.td03.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Molecular hydrogen"

1

Crabtree, R. H. Hydrogen Storage by Molecular Polyhydrides. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada194207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Calef, D. F. Molecular models for the intercalation of hydrogen molecules into modified graphites. Office of Scientific and Technical Information (OSTI), Dezember 1995. http://dx.doi.org/10.2172/212469.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mountain, Raymond D. Molecular dynamics and hydrogen bonds in water. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Struzhkin, Viktor V., Wendy L. Mao, Ho-Kwang Mao, Burkhard Militzer und Russell Hemley. Hydrogen Storage in Novel Molecular Materials, Final Report. Office of Scientific and Technical Information (OSTI), Mai 2006. http://dx.doi.org/10.2172/977587.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

John, Vijay T., Gary L. McPherson, Hank Ashbaugh und Camille Y. Johnes. Molecular Design Basis for Hydrogen Storage in Clathrate Hydrates. Office of Scientific and Technical Information (OSTI), Juni 2013. http://dx.doi.org/10.2172/1086498.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sahimi, Muhammad. Nanoporous Membranes for Hydrogen Production: Experimental Studies and Molecular Simulations. Office of Scientific and Technical Information (OSTI), Dezember 2013. http://dx.doi.org/10.2172/1151832.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wall, Judy D. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria. Office of Scientific and Technical Information (OSTI), Dezember 2014. http://dx.doi.org/10.2172/1166017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wall, J. Genetics and molecular biology of hydrogen metabolism in sulfate reducing bacteria. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6892389.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chiravalle, Vincent. Simulation of Molecular Hydrogen Jets and Visualization of Associated Hydrodynamic Features. Office of Scientific and Technical Information (OSTI), Mai 2023. http://dx.doi.org/10.2172/1972963.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Boreham, C. J., L. Wang, J. Sohn, N. Jinadasa, Z. Hong, J. Chen, E. Grosjean und A. Jarrett. Exploring for the Future - NDI Carrara 1 gas geochemistry: molecular composition, carbon and hydrogen isotopes of hydrocarbon gases, and the sources of molecular hydrogen and helium. Geoscience Australia, 2022. http://dx.doi.org/10.11636/record.2022.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie