Zeitschriftenartikel zum Thema „Molecular genetics“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Molecular genetics.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Molecular genetics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Athanasiou, Y., M. Zavros, M. Arsali, L. Papazachariou, P. Demosthenous, I. Savva, K. Voskarides et al. „GENETIC DISEASES AND MOLECULAR GENETICS“. Nephrology Dialysis Transplantation 29, suppl 3 (01.05.2014): iii339—iii350. http://dx.doi.org/10.1093/ndt/gfu162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Stekrova, J., J. Reiterova, V. Elisakova, M. Merta, M. Kohoutova, V. Tesar, S. Suvakov et al. „Genetic diseases and molecular genetics“. Clinical Kidney Journal 4, suppl 2 (01.06.2011): 4.s2.28. http://dx.doi.org/10.1093/ndtplus/4.s2.28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Legendre, C., D. Cohen, Y. Delmas, T. Feldkamp, D. Fouque, R. Furman, O. Gaber et al. „Genetic diseases and molecular genetics“. Nephrology Dialysis Transplantation 28, suppl 1 (01.05.2013): i309—i321. http://dx.doi.org/10.1093/ndt/gft126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wierzbicki, Anthony S. „Genetics and molecular biology: Genetic epidemiology“. Current Opinion in Lipidology 15, Nr. 6 (Dezember 2004): 699–701. http://dx.doi.org/10.1097/00041433-200412000-00011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Vázquez, José. „Molecular Genetics“. American Biology Teacher 65, Nr. 8 (01.10.2003): 634. http://dx.doi.org/10.2307/4451575.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vázquez, José. „Molecular Genetics“. American Biology Teacher 68, Nr. 4 (01.04.2006): 253–54. http://dx.doi.org/10.2307/4451977.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

&NA;. „Molecular genetics“. Current Opinion in Cardiology 12, Nr. 3 (Mai 1997): B91. http://dx.doi.org/10.1097/00001573-199705000-00017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Towbin, Jeffrey A. „Molecular genetics“. Current Opinion in Cardiology 16, Nr. 3 (Mai 2001): 187. http://dx.doi.org/10.1097/00001573-200105000-00005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

&NA;. „Molecular Genetics“. Journal of Pediatric Hematology/Oncology 25, Nr. 4 (April 2003): S16—S17. http://dx.doi.org/10.1097/00043426-200304000-00035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Padua, R. A. „Molecular Genetics“. Journal of Medical Genetics 27, Nr. 3 (01.03.1990): 216. http://dx.doi.org/10.1136/jmg.27.3.216.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Johnson, I. R. „Molecular genetics“. Current Obstetrics & Gynaecology 10, Nr. 3 (September 2000): 119. http://dx.doi.org/10.1054/cuog.2000.0134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

McEwan, A. „Molecular genetics“. Current Obstetrics & Gynaecology 10, Nr. 3 (September 2000): 170–74. http://dx.doi.org/10.1054/cuog.2000.0135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Scott, Leland J. „Molecular genetics“. Electroencephalography and Clinical Neurophysiology 94, Nr. 5 (Mai 1995): 385–86. http://dx.doi.org/10.1016/0013-4694(95)90014-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Commoner, Barry. „Molecular Genetics“. Organization & Environment 22, Nr. 1 (März 2009): 19–33. http://dx.doi.org/10.1177/1086026609333420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Super, M. „Molecular genetics“. Postgraduate Medical Journal 72, Nr. 854 (01.12.1996): 769. http://dx.doi.org/10.1136/pgmj.72.854.769-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Albert, Daniel M. „Molecular Genetics“. Archives of Ophthalmology 113, Nr. 5 (01.05.1995): 565. http://dx.doi.org/10.1001/archopht.1995.01100050031023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Pánková, K. „Stephen H. Howell – Molecular Genetics of Plant Development“. Czech Journal of Genetics and Plant Breeding 38, No. 3-4 (01.08.2012): 135–36. http://dx.doi.org/10.17221/6250-cjgpb.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Pato, Michele T., Humberto Nicolini und Carlos N. Pato. „Psychiatry and Molecular Genetics“. CNS Spectrums 4, Nr. 5 (Mai 1999): 16. http://dx.doi.org/10.1017/s1092852900011664.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Molecular genetic studies of complex disorders require a number of parallel strategies. Many of the more familial psychiatric syndromes are highly prevalent and may represent a collection of a number of distinct genetic subtypes and possibly a number of nongenetic subtypes. A nongenetic form of illness may appear clinically indistinguishable from a genetic form. These nongenetic subtypes of a syndrome would be considered phenocopies. In this and the subsequent issue of CNS Spectrums, a number of papers are presented that review the current state of psychiatric genetics of major disorders. Clinical strategies to narrow phenotypes and better define study populations are paired with laboratory and statistical strategies to optimize both candidate gene and genome scanning methods.In this issue, Kennedy and colleagues focus on a review of the genetics of schizophrenia, highlighting genome scans already completed and studies on special populations. Schindler and colleagues present a unique and efficient method for defining the homogeneity of a study population, surname analysis, and the importance of population selection in the design of genetic studies. Macedo and colleagues demonstrate the study of anticipation in bipolar mood disorder. Genetic anticipation is the observation of an earlier age of onset and greater disease severity in younger generations. This pattern has been associated with dynamic repeat expansions in the DNA in several neuropsychiatric disorders, and represents a good example of a unique genetic mechanism causing a unique phenotypic pattern. Nicolini and colleagues present work done to date on obsessive-compulsive disorder.
19

Brock, D. J. „A consortium approach to molecular genetic services. Scottish Molecular Genetics Consortium.“ Journal of Medical Genetics 27, Nr. 1 (01.01.1990): 8–13. http://dx.doi.org/10.1136/jmg.27.1.8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Casillas, Sònia, und Antonio Barbadilla. „Molecular Population Genetics“. Genetics 205, Nr. 3 (März 2017): 1003–35. http://dx.doi.org/10.1534/genetics.116.196493.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Taylor, Matthew RG, Elisa Carniel und Luisa Mestroni. „Familial hypertrophic cardiomyopathy: clinical features, molecular genetics and molecular genetic testing“. Expert Review of Molecular Diagnostics 4, Nr. 1 (Januar 2004): 99–113. http://dx.doi.org/10.1586/14737159.4.1.99.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Monaco, Anthony P. „Human molecular genetics: Methods in molecular genetics (Vol. 8)“. Trends in Genetics 12, Nr. 11 (November 1996): 488. http://dx.doi.org/10.1016/0168-9525(96)83874-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Pals, Gerard. „Molecular genetics, genetic testing, novel genome sequencing technologies“. Journal of thee Medical Sciences (Berkala Ilmu Kedokteran) 48, Nr. 04 (Suplement) (01.12.2016): 11. http://dx.doi.org/10.19106/jmedsciesup004804201609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Reichert, Matthias C., Rabea A. Hall, Marcin Krawczyk und Frank Lammert. „Genetic determinants of cholangiopathies: Molecular and systems genetics“. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1864, Nr. 4 (April 2018): 1484–90. http://dx.doi.org/10.1016/j.bbadis.2017.07.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Flood, Liam. „Genetics for Ent Specialists: The Molecular Genetic Basis of Ent Disorders (Genetics)“. Journal of Laryngology & Otology 119, Nr. 8 (August 2005): 665. http://dx.doi.org/10.1258/0022215054516340.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

CLEGG, M. T. „Molecular Evolution: Molecular Evolutionary Genetics.“ Science 235, Nr. 4788 (30.01.1987): 599. http://dx.doi.org/10.1126/science.235.4788.599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kowalczyk, Marek, Ewelina Zawadzka, Dariusz Szewczuk, Magdalena Gryzińska und Andrzej Jakubczak. „Molecular markers used in forensic genetics“. Medicine, Science and the Law 58, Nr. 4 (30.09.2018): 201–9. http://dx.doi.org/10.1177/0025802418803852.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Forensic genetics is a field that has become subject to increasing interest in recent years. Both the technology and the markers used for forensic purposes have changed since the 1980s. The minisatellite sequences used in the famous Pitchfork case introduced genetics to the forensic sciences. Minisatellite sequences have now been replaced by more sensitive microsatellite markers, which have become the basis for the creation of genetic profile databases. Modern molecular methods also exploit single nucleotide polymorphisms, which are often the only way to identify degraded DNA samples. The same type of variation is taken into consideration in attempting to establish the ethnicity of a perpetrator and to determine phenotypic traits such as the eye or hair colour of the individual who is the source of the genetic material. This paper contains a review of the techniques and molecular markers used in human and animal forensic genetics, and also presents the potential trends in forensic genetics such as phenotyping.
28

Kyselová, Jitka, Ladislav Tichý und Kateřina Jochová. „The role of molecular genetics in animal breeding: A minireview“. Czech Journal of Animal Science 66, No. 4 (26.03.2021): 107–11. http://dx.doi.org/10.17221/251/2020-cjas.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Current animal breeding approaches are strongly associated with the development of sophisticated molecular genetics methods and techniques. Worldwide expansion of genomic selection can be achieved by the identification of genetic DNA markers and implementation of the microarray (“chip”) technology. Further advancement was associated with next-generation sequencing methods, high-throughput genotyping platforms, targeted genome editing techniques, and studies of epigenetic mechanisms. The remarkable development of “omics” technologies, such as genomics, epigenomics, transcriptomics, proteomics and metabolomics, has enabled individual genomic prediction of animal performance, identification of disease-causing genes and biomarkers for the prevention and treatment and overall qualitative progress in animal production.
29

Khrypunova, Tetiana. „Molecular Biology and Genetics Teaching at Different Levels of Education“. Ukraïnsʹkij žurnal medicini, bìologìï ta sportu 5, Nr. 5 (01.11.2020): 293–97. http://dx.doi.org/10.26693/jmbs05.05.293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This article is focused on mapping out the form and extent of education of genetics and molecular biology in high schools in Czech Republic and impact of liberalization of education compared to education in Slovac Republic, where education is partly liberalized, and Ukraine, where education is centralized. We have evaluated the available literature, subjective satisfaction of students and retrospective evaluation from absolvents of adequacy of education according to further studies on universities or colleges. In this article we concentrated on gymnasiums and lyceums, because genetics and molecular biology is taught (as separate disciplines) in these types of school and relevant part of students continue studying them in colleges and universities. Among the students of universities who answered the questions of our questionnaire were students of the biological, biochemical and medical faculties, because they were the ones who continue to study these subjects in universities. Material and methods. Our research was based on studying the available literature concerning current legislation of the selected countries (mainly the difference between education systems of countries), as well as surveys among middle and high school students, university students and secondary school teachers in the form of a questionnaire. We are aware of the fact that the amount of data we have obtained in the research is not entirely sufficient to create a picture of the overall situation, but we hope that the obtained data will still provide some insight into the situation as a whole. According to collected data we have divided taught topics into several categories: depending on the extent and depth of immersion in the topic of teaching; the degree to which they are understandable to students; and the degree to which the topics are sufficient for further study at universities. We compared the results of the above countries and outlined the relationship between them. Conclusion. We noted several changes that had occurred in education under the influence of the liberalization
30

Guo, Ming, Xianglin Mao und Xiaoqing Ding. „Molecular genetics related to non-Hodgkin lymphoma“. Open Life Sciences 11, Nr. 1 (01.01.2016): 86–90. http://dx.doi.org/10.1515/biol-2016-0011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractNon-Hodgkin lymphoma (NHL) is a serious disease, with a high proportion of mortality. Molecular genetic abnormalities are very common in NHL, but specific characterization in accordance to molecular genetics for lymphoma subtypes is not yet completed. This article summarizes the relationship between B- and T-NHL and molecular genetics. We focus on NHL subtypes and emphasize its features to figure out what is exposed about NHL genetics. The basis of this method is collection of biological specimens for genomic and genetic analyses. This summary may help to prompt prediction of outcomes and guide therapy in the future.
31

Ferreira de Camargo, Gregório Miguel. „The role of molecular genetics in livestock production“. Animal Production Science 59, Nr. 2 (2019): 201. http://dx.doi.org/10.1071/an18013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Genetic variations that lead to easy-to-identify phenotypic changes have always been of interest to livestock breeders since domestication. Molecular genetics has opened up possibilities for identifying these variations and understanding their biological and population effects. Moreover, molecular genetics is part of the most diverse approaches and applications in animal production nowadays, including paternity testing, selection based on genetic variants, diagnostic of genetic diseases, reproductive biotechniques, fraud identification, differentiation of hybrids, parasite identification, genetic evaluation, diversity studies, and genome editing, among others. Therefore, the objective of this review was to describe the different applications of molecular genetics in livestock production, contextualising them with examples and highlighting the importance of the study of these topics and their applications.
32

Beauchamp, Jonathan P., David Cesarini, Magnus Johannesson, Matthijs J. H. M. van der Loos, Philipp D. Koellinger, Patrick J. F. Groenen, James H. Fowler, J. Niels Rosenquist, A. Roy Thurik und Nicholas A. Christakis. „Molecular Genetics and Economics“. Journal of Economic Perspectives 25, Nr. 4 (01.11.2011): 57–82. http://dx.doi.org/10.1257/jep.25.4.57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The costs of comprehensively genotyping human subjects have fallen to the point where major funding bodies, even in the social sciences, are beginning to incorporate genetic and biological markers into major social surveys. How, if at all, should economists use and combine molecular genetic and economic data from these surveys? What challenges arise when analyzing genetically informative data? To illustrate, we present results from a “genome-wide association study” of educational attainment. We use a sample of 7,500 individuals from the Framingham Heart Study; our dataset contains over 360,000 genetic markers per person. We get some initially promising results linking genetic markers to educational attainment, but these fail to replicate in a second large sample of 9,500 people from the Rotterdam Study. Unfortunately such failure is typical in molecular genetic studies of this type, so the example is also cautionary. We discuss a number of methodological challenges that face researchers who use molecular genetics to reliably identify genetic associates of economic traits. Our overall assessment is cautiously optimistic: this new data source has potential in economics. But researchers and consumers of the genoeconomic literature should be wary of the pitfalls, most notably the difficulty of doing reliable inference when faced with multiple hypothesis problems on a scale never before encountered in social science.
33

Craddock, Nick, und Ian Jones. „Molecular genetics of bipolar disorder“. British Journal of Psychiatry 178, S41 (Juni 2001): s128—s133. http://dx.doi.org/10.1192/bjp.178.41.s128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
BackgroundA robust body of evidence from family, twin and adoption studies demonstrates the importance of genes in the pathogenesis of bipolar disorder. Recent advances in molecular genetics have made it possible to identify these susceptibility genes.AimsTo present an overview for clinical psychiatrists.MethodReview of current molecular genetics approaches and emerging findings.ResultsOccasional families may exist in which a single gene plays a major role in determining susceptibility, but the majority of bipolar disorder involves more complex genetic mechanisms such as the interaction of multiple genes and environmental factors. Molecular genetic positional and candidate gene approaches are being used for the genetic dissection of bipolar disorder. No gene has yet been identified but promising findings are emerging. Regions of interest include chromosomes 4p16, 12q23–q24, 16p13, 21q22, and Xq24–q26. Candidate gene association studies are in progress but no robust positive findings have yet emerged.ConclusionIt is almost certain that over the next few years the identification of bipolar susceptiblity genes will have a major impact on our understanding of disease pathophysiology. This is likely to lead to major improvements and treatment in patient care, but will also raise important ethical issues.
34

Tillotson, Glenn S. „Staphylococcus: Molecular Genetics“. Expert Review of Anti-infective Therapy 6, Nr. 6 (Dezember 2008): 849–50. http://dx.doi.org/10.1586/14787210.6.6.849.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Cummings, Michael R. „Medical Molecular Genetics“. Annals of Internal Medicine 128, Nr. 12_Part_1 (15.06.1998): 1052. http://dx.doi.org/10.7326/0003-4819-128-12_part_1-199806150-00038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Mitchell, Sharon E., und M. A. Hoy. „Insect Molecular Genetics“. Florida Entomologist 79, Nr. 3 (September 1996): 473. http://dx.doi.org/10.2307/3495602.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

MORGAN, M. J. „Molecular Cell Genetics“. Biochemical Society Transactions 14, Nr. 4 (01.08.1986): 792–93. http://dx.doi.org/10.1042/bst0140792a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Anderson, Page A. W. „Cardiovascular molecular genetics“. Current Opinion in Cardiology 9, Nr. 1 (Januar 1994): 78–90. http://dx.doi.org/10.1097/00001573-199401000-00010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Wallace, Bruce. „Molecular Evolutionary Genetics“. Journal of Heredity 79, Nr. 2 (März 1988): 139. http://dx.doi.org/10.1093/oxfordjournals.jhered.a110475.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

&NA;. „Cytogenetics/Molecular Genetics“. Journal of Pediatric Hematology/Oncology 25, Nr. 4 (April 2003): S4—S5. http://dx.doi.org/10.1097/00043426-200304000-00024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Whittaker, J. „Human Molecular Genetics“. Journal of Medical Genetics 33, Nr. 8 (01.08.1996): 720. http://dx.doi.org/10.1136/jmg.33.8.720-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Trump, D. „Human Molecular Genetics“. Journal of Medical Genetics 34, Nr. 2 (01.02.1997): 176. http://dx.doi.org/10.1136/jmg.34.2.176-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ostrander, E. A. „Canine molecular genetics“. Animal Biotechnology 10, Nr. 3 (November 1999): 103. http://dx.doi.org/10.1080/10495399909525929.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Chardon, P. „4. Molecular genetics“. Animal Genetics 20, Nr. 1 (24.04.2009): 84–111. http://dx.doi.org/10.1111/j.1365-2052.1989.tb01911.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Ashley, Mary. „Molecular Conservation Genetics“. American Scientist 87, Nr. 1 (1999): 28. http://dx.doi.org/10.1511/1999.1.28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Gold, Scott. „Plant molecular genetics“. Crop Protection 16, Nr. 5 (August 1997): 491. http://dx.doi.org/10.1016/s0261-2194(97)84559-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Nordborg, Magnus, und Hideki Innan. „Molecular population genetics“. Current Opinion in Plant Biology 5, Nr. 1 (Februar 2002): 69–73. http://dx.doi.org/10.1016/s1369-5266(01)00230-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Pritchard, Catrin. „Molecular cell genetics“. Trends in Genetics 2 (Januar 1986): 143. http://dx.doi.org/10.1016/0168-9525(86)90205-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Smith, R. J. „Molecular cell genetics“. FEBS Letters 214, Nr. 1 (06.04.1987): 199. http://dx.doi.org/10.1016/0014-5793(87)80044-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Glover, DavidM. „Advanced molecular genetics“. FEBS Letters 188, Nr. 1 (19.08.1985): 165. http://dx.doi.org/10.1016/0014-5793(85)80897-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie