Zeitschriftenartikel zum Thema „Molecular dynamics“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Molecular dynamics.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Molecular dynamics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Gough, Craig A., Takashi Gojobori und Tadashi Imanishi. „1P563 Consistent dynamic phenomena in amyloidogenic forms of transthyretin : a molecular dynamics study(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S287. http://dx.doi.org/10.2142/biophys.46.s287_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Biyani, Manish, T. Aoyama und K. Nishigaki. „1M1330 Solution structure dynamics of single-stranded oligonucleotides : Experiments and molecular dynamics.“ Seibutsu Butsuri 42, supplement2 (2002): S76. http://dx.doi.org/10.2142/biophys.42.s76_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Okumura, Hisashi, Satoru G. Itoh und Yuko Okamoto. „1P585 Explicit Symplectic Molecular Dynamics Simulation for Rigid-Body Molecules in the Canonical Ensemble(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S293. http://dx.doi.org/10.2142/biophys.46.s293_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sugiyama, Ayumu, Tetsunori Yamamoto, Hidemi Nagao, Keigo Nishikawa, Nobutaka Numoto, Kunio Miki und Yoshihiro Fukumori. „1P567 Molecular dynamics study of dynamical structure stability of giant hemoglobin from Oligobrachia mashikoi(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)“. Seibutsu Butsuri 46, supplement2 (2006): S288. http://dx.doi.org/10.2142/biophys.46.s288_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Slavgorodska, Maria, und Alexander Kyrychenko. „Structure and Dynamics of Pyrene-Labeled Poly(acrylic acid): Molecular Dynamics Simulation Study“. Chemistry & Chemical Technology 14, Nr. 1 (20.02.2020): 76–80. http://dx.doi.org/10.23939/chcht14.01.076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Davies, Matt. „Molecular dynamics“. Biochemist 26, Nr. 4 (01.08.2004): 53–54. http://dx.doi.org/10.1042/bio02604053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bergstra, J. A., und I. Bethke. „Molecular dynamics“. Journal of Logic and Algebraic Programming 51, Nr. 2 (Juni 2002): 193–214. http://dx.doi.org/10.1016/s1567-8326(02)00021-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Goodfellow, Julia M., und Mark A. Williams. „Molecular dynamics“. Current Biology 2, Nr. 5 (Mai 1992): 257–58. http://dx.doi.org/10.1016/0960-9822(92)90373-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Goodfellow, Julia M., und Mark A. Williams. „Molecular dynamics“. Current Opinion in Structural Biology 2, Nr. 2 (April 1992): 211–16. http://dx.doi.org/10.1016/0959-440x(92)90148-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Alder, Berni J. „Slow dynamics by molecular dynamics“. Physica A: Statistical Mechanics and its Applications 315, Nr. 1-2 (November 2002): 1–4. http://dx.doi.org/10.1016/s0378-4371(02)01220-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Williams, Sarah L., César Augusto F. de Oliveira und J. Andrew McCammon. „Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics“. Journal of Chemical Theory and Computation 6, Nr. 2 (14.01.2010): 560–68. http://dx.doi.org/10.1021/ct9005294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Righini, R. „Molecular dynamics and lattice dynamics calculations in molecular crystals“. Physica B+C 131, Nr. 1-3 (August 1985): 234–48. http://dx.doi.org/10.1016/0378-4363(85)90156-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Phares, Denis J., und Arun R. Srinivasa. „Molecular Dynamics with Molecular Temperature“. Journal of Physical Chemistry A 108, Nr. 29 (Juli 2004): 6100–6108. http://dx.doi.org/10.1021/jp037910y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Wagner, Geri, Eirik Flekkøy, Jens Feder und Torstein Jøssang. „Coupling molecular dynamics and continuum dynamics“. Computer Physics Communications 147, Nr. 1-2 (August 2002): 670–73. http://dx.doi.org/10.1016/s0010-4655(02)00371-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Erban, Radek. „From molecular dynamics to Brownian dynamics“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, Nr. 2167 (08.07.2014): 20140036. http://dx.doi.org/10.1098/rspa.2014.0036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Three coarse-grained molecular dynamics (MD) models are investigated with the aim of developing and analysing multi-scale methods which use MD simulations in parts of the computational domain and (less detailed) Brownian dynamics (BD) simulations in the remainder of the domain. The first MD model is formulated in one spatial dimension. It is based on elastic collisions of heavy molecules (e.g. proteins) with light point particles (e.g. water molecules). Two three-dimensional MD models are then investigated. The obtained results are applied to a simplified model of protein binding to receptors on the cellular membrane. It is shown that modern BD simulators of intracellular processes can be used in the bulk and accurately coupled with a (more detailed) MD model of protein binding which is used close to the membrane.
16

Brooks, Charles L., David A. Case, Steve Plimpton, Benoît Roux, David van der Spoel und Emad Tajkhorshid. „Classical molecular dynamics“. Journal of Chemical Physics 154, Nr. 10 (14.03.2021): 100401. http://dx.doi.org/10.1063/5.0045455.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

SHINTO, Hiroyuki. „Molecular Dynamics Simulation“. Journal of the Japan Society of Colour Material 86, Nr. 10 (2013): 380–85. http://dx.doi.org/10.4011/shikizai.86.380.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hoover. „Nonequilibrium molecular dynamics“. Condensed Matter Physics 8, Nr. 2 (2005): 247. http://dx.doi.org/10.5488/cmp.8.2.247.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Binder, Kurt, Jürgen Horbach, Walter Kob, Wolfgang Paul und Fathollah Varnik. „Molecular dynamics simulations“. Journal of Physics: Condensed Matter 16, Nr. 5 (23.01.2004): S429—S453. http://dx.doi.org/10.1088/0953-8984/16/5/006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Ashfold, M. N. R., und D. H. Parker. „Imaging molecular dynamics“. Phys. Chem. Chem. Phys. 16, Nr. 2 (2014): 381–82. http://dx.doi.org/10.1039/c3cp90161k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Thomas, David D. „Molecular dynamics resolved“. Nature 321, Nr. 6069 (Mai 1986): 539–40. http://dx.doi.org/10.1038/321539a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

STADLER, BÄRBEL M. R., und PETER F. STADLER. „MOLECULAR REPLICATOR DYNAMICS“. Advances in Complex Systems 06, Nr. 01 (März 2003): 47–77. http://dx.doi.org/10.1142/s0219525903000724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Template-dependent replication at the molecular level is the basis of reproduction in nature. A detailed understanding of the peculiarities of the chemical reaction kinetics associated with replication processes is therefore an indispensible prerequisite for any understanding of evolution at the molecular level. Networks of interacting self-replicating species can give rise to a wealth of different dynamical phenomena, from competitive exclusion to permanent coexistence, from global stability to multi-stability and chaotic dynamics. Nevertheless, there are some general principles that govern their overall behavior. We focus on the question to what extent the dynamics of replication can explain the accumulation of genetic information that eventually leads to the emergence of the first cell and hence the origin of life as we know it. A large class of ligation-based replication systems, which includes the experimentally available model systems for template directed self-replication, is of particular interest because its dynamics bridges the gap between the survival of a single fittest species to the global coexistence of everthing. In this intermediate regime the selection is weak enough to allow the coexistence of genetically unrelated replicators and strong enough to limit the accumulation of disfunctional mutants.
23

Rapaport, D. C. „Interactive molecular dynamics“. Physica A: Statistical Mechanics and its Applications 240, Nr. 1-2 (Juni 1997): 246–54. http://dx.doi.org/10.1016/s0378-4371(97)00148-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Tidor, Bruce. „Molecular dynamics simulations“. Current Biology 7, Nr. 9 (September 1997): R525—R527. http://dx.doi.org/10.1016/s0960-9822(06)00269-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Hansson, Tomas, Chris Oostenbrink und WilfredF van Gunsteren. „Molecular dynamics simulations“. Current Opinion in Structural Biology 12, Nr. 2 (April 2002): 190–96. http://dx.doi.org/10.1016/s0959-440x(02)00308-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Matthews, G. Peter. „Molecular dynamics simulator“. Journal of Chemical Education 70, Nr. 5 (Mai 1993): 387. http://dx.doi.org/10.1021/ed070p387.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Krienke, Hartmut. „Molecular dynamics simulation“. Journal of Molecular Liquids 75, Nr. 3 (März 1998): 271–72. http://dx.doi.org/10.1016/s0167-7322(97)00106-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Bandrauk, André D., Jörn Manz und M. J. J. Vrakking. „Attosecond molecular dynamics“. Chemical Physics 366, Nr. 1-3 (Dezember 2009): 1. http://dx.doi.org/10.1016/j.chemphys.2009.10.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

DUMITRICA, T., und R. JAMES. „Objective molecular dynamics“. Journal of the Mechanics and Physics of Solids 55, Nr. 10 (Oktober 2007): 2206–36. http://dx.doi.org/10.1016/j.jmps.2007.03.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Mitchell, P. J., und D. Fincham. „Multicomputer molecular dynamics“. Future Generation Computer Systems 9, Nr. 1 (Mai 1993): 5–10. http://dx.doi.org/10.1016/0167-739x(93)90020-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Casavecchia, Piergiorgio, Mark Brouard, Michel Costes, David Nesbitt, Evan Bieske und Scott Kable. „Molecular collision dynamics“. Physical Chemistry Chemical Physics 13, Nr. 18 (2011): 8073. http://dx.doi.org/10.1039/c1cp90049h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Schroeder, Daniel V. „Interactive molecular dynamics“. American Journal of Physics 83, Nr. 3 (März 2015): 210–18. http://dx.doi.org/10.1119/1.4901185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Straatsma, T. P. „Scalable molecular dynamics“. Journal of Physics: Conference Series 16 (01.01.2005): 287–99. http://dx.doi.org/10.1088/1742-6596/16/1/040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Hoffman, Mark B., und Peter V. Coveney. „Lattice Molecular Dynamics“. Molecular Simulation 27, Nr. 3 (September 2001): 157–68. http://dx.doi.org/10.1080/08927020108023021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Rapaport, D. C. „Molecular dynamics simulation“. Computing in Science & Engineering 1, Nr. 1 (1999): 70–71. http://dx.doi.org/10.1109/5992.743625.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

D.P. „Molecular photodissociation dynamics“. Journal of Molecular Structure 213 (Oktober 1989): 321. http://dx.doi.org/10.1016/0022-2860(89)85133-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Feldmeier, H. „Fermionic molecular dynamics“. Nuclear Physics A 515, Nr. 1 (August 1990): 147–72. http://dx.doi.org/10.1016/0375-9474(90)90328-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Ritchie, Burke. „Quantum molecular dynamics“. International Journal of Quantum Chemistry 111, Nr. 1 (26.10.2010): 1–7. http://dx.doi.org/10.1002/qua.22371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Heermann, Dieter W., Peter Nielaba und Mauro Rovere. „Hybrid molecular dynamics“. Computer Physics Communications 60, Nr. 3 (Oktober 1990): 311–18. http://dx.doi.org/10.1016/0010-4655(90)90030-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hoover, Wm G. „Nonequilibrium molecular dynamics“. Nuclear Physics A 545, Nr. 1-2 (August 1992): 523–36. http://dx.doi.org/10.1016/0375-9474(92)90490-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Tully, John C. „Nonadiabatic molecular dynamics“. International Journal of Quantum Chemistry 40, S25 (1991): 299–309. http://dx.doi.org/10.1002/qua.560400830.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Schulman, Stephen J. „Molecular Photodissociation Dynamics“. Journal of Pharmaceutical Sciences 78, Nr. 5 (Mai 1989): 435. http://dx.doi.org/10.1002/jps.2600780520.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Braeckmans, Kevin, Dries Vercauteren, Jo Demeester und Stefaan C. De Smedt. „Measuring Molecular Dynamics“. Imaging & Microscopy 11, Nr. 2 (Mai 2009): 26–28. http://dx.doi.org/10.1002/imic.200990033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Proctor, Elizabeth A., Feng Ding und Nikolay V. Dokholyan. „Discrete molecular dynamics“. WIREs Computational Molecular Science 1, Nr. 1 (Januar 2011): 80–92. http://dx.doi.org/10.1002/wcms.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

VASHISHTA, PRIYA, RAJIV K. KALIA, AIICHIRO NAKANO und JIN YU. „MOLECULAR DYNAMICS AND QUANTUM MOLECULAR DYNAMICS SIMULATIONS ON PARALLEL ARCHITECTURES“. International Journal of Modern Physics C 05, Nr. 02 (April 1994): 281–83. http://dx.doi.org/10.1142/s0129183194000325.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Efficient parallel molecular dynamics (MD) algorithm based on the multiple-time-step (MTS) approach is developed. The MTS-MD algorithm is used to study structural correlations in porous silica at densities 2.2 g/cm3 to 1.6 g/cm3. Nature of phonons and effects of hydrostatic pressure in solid C60 is studied using the tight-binding MD method within a unified interaction model which includes intermolecular and intra-molecular interactions.
46

Narumi, Tetsu, Ryutaro Susukita, Toshikazu Ebisuzaki, Geoffrey McNiven und Bruce Elmegreen. „Molecular Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simulations“. Molecular Simulation 21, Nr. 5-6 (Januar 1999): 401–15. http://dx.doi.org/10.1080/08927029908022078.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Wu, Jian-Bo, Shu-Jia Li, Hong Liu, Hu-Jun Qian und Zhong-Yuan Lu. „Dynamics and reaction kinetics of coarse-grained bulk vitrimers: a molecular dynamics study“. Physical Chemistry Chemical Physics 21, Nr. 24 (2019): 13258–67. http://dx.doi.org/10.1039/c9cp01766f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We used the hybrid molecular dynamics–Monte Carlo (MD–MC) algorithm to establish a molecular dynamics model that can accurately reflect bond exchange reactions, and reveal the intrinsic mechanism of the dynamic behavior of the vitrimer system.
48

Anam, Muhammad Syaekhul, und S. Suwardi. „Hydration Structures and Dynamics of Ga3+ Ion Based on Molecular Mechanics Molecular Dynamics Simulation (Classical DM)“. Indonesian Journal of Chemistry and Environment 4, Nr. 2 (10.03.2022): 49–56. http://dx.doi.org/10.21831/ijoce.v4i2.48401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The structure and hydration dynamics of Ga3+ ion have been studied using classical Molecular Dynamics (MD) simulations. The data collection procedure includes determining the best base set, constructing 2-body and 3-body potential equations, classical molecular dynamics simulations based on 2-body potentials, classical molecular dynamics simulations based on 2-body + 3 potential-body. The trajectory file data analysis was done to obtain structural properties parameters such as RDF, CND, ADF, and dynamic properties, namely the movement of H2O ligands between hydrations shells. The results of the research indicated that the hydration complex structure of Ga(H2O)83+ and Ga(H2O)63+ was observed in molecular dynamics simulations (MM-2 body) and (MM-2 body + 3-body), respectively. The movement of H2O ligands occurs between the first and second shell or vice versa in the MD simulation of MM-2 bodies but does not occur in MD simulations of (MM-2 bodies + MM-3 bodies). Therefore, the water ligands in the first hydrated shell are stable.
49

Sivak, A. B., D. N. Demidov und P. A. Sivak. „DIFFUSION CHARACTERISTICS OF RADIATION DEFECTS IN IRON: MOLECULAR DYNAMICS DATA“. Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 44, Nr. 2 (2021): 148–57. http://dx.doi.org/10.21517/0202-3822-2021-44-2-148-157.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Inoue, Yasuhiro, Shinji Matsushita und Taiji Adachi. „BC-JP-6 Molecular dynamics simulations of an actin filament“. Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _BC—JP—6–1—_BC—JP—6–1. http://dx.doi.org/10.1299/jsmemecj.2012._bc-jp-6-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie