Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Molecular diode“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Molecular diode" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Molecular diode"
Guo, Qianqian, Fei Lu, Qiulin Tan, Tianhao Zhou, Jijun Xiong und Wendong Zhang. „Al2O3-Based a-IGZO Schottky Diodes for Temperature Sensing“. Sensors 19, Nr. 2 (09.01.2019): 224. http://dx.doi.org/10.3390/s19020224.
Der volle Inhalt der QuelleVandevender, J. P., S. A. Slutz, D. B. Seidel, R. S. Coats, P. A. Miller, C. W. Mendel und J. P. Quintenz. „PBFA II ion diode theory and implications“. Laser and Particle Beams 5, Nr. 3 (August 1987): 439–49. http://dx.doi.org/10.1017/s0263034600002925.
Der volle Inhalt der QuelleКалиновский, В. С., Е. В. Контрош, Г. В. Климко, С. В. Иванов, В. С. Юферев, Б. Я. Бер, Д. Ю. Казанцев und В. М. Андреев. „Разработка и исследование туннельных p-i-n-диодов GaAs/AlGaAs для многопереходных преобразователей мощного лазерного излучения“. Физика и техника полупроводников 54, Nr. 3 (2020): 285. http://dx.doi.org/10.21883/ftp.2020.03.49034.9298.
Der volle Inhalt der QuellePushkarev, A. I., und YU I. Isakova. „A spiral self-magnetically insulated ion diode“. Laser and Particle Beams 30, Nr. 3 (12.06.2012): 427–33. http://dx.doi.org/10.1017/s0263034612000316.
Der volle Inhalt der QuelleShashikala, B. N., und B. S. Nagabhushana. „Reduction of reverse leakage current at the TiO2/GaN interface in field plate Ni/Au/n-GaN Schottky diodes“. Semiconductor Physics, Quantum Electronics and Optoelectronics 24, Nr. 04 (23.11.2021): 399–406. http://dx.doi.org/10.15407/spqeo24.04.399.
Der volle Inhalt der QuelleCammack, Richard. „Plug in a molecular diode“. Nature 356, Nr. 6367 (März 1992): 288–89. http://dx.doi.org/10.1038/356288b0.
Der volle Inhalt der QuelleОболенская, Е. С., А. С. Иванов, Д. Г. Павельев, В. А. Козлов und А. П. Васильев. „Сравнение особенностей транспорта электронов и субтетрагерцовой генерации в диодах на основе 6-, 18-, 30-, 70- и 120-периодных сверхрешеток GaAs/AlAs“. Физика и техника полупроводников 53, Nr. 9 (2019): 1218. http://dx.doi.org/10.21883/ftp.2019.09.48127.10.
Der volle Inhalt der QuelleCai, Dan, Lie Liu, Jinchuan Ju, Xuelong Zhao und Yongfeng Qiu. „Observation of a U-like shaped velocity evolution of plasma expansion during a high-power diode operation“. Laser and Particle Beams 32, Nr. 3 (24.07.2014): 443–47. http://dx.doi.org/10.1017/s0263034614000366.
Der volle Inhalt der QuelleГребенщикова, Е. А., В. Г. Сидоров, В. А. Шутаев und Ю. П. Яковлев. „Влияние концентрации водорода на фототок диодов Шоттки Pd/n-InP“. Физика и техника полупроводников 53, Nr. 2 (2019): 246. http://dx.doi.org/10.21883/ftp.2019.02.47107.8967.
Der volle Inhalt der QuelleKAWAGUCHI, H. „POLARIZATION BISTABLE LASER DIODES“. Journal of Nonlinear Optical Physics & Materials 02, Nr. 03 (Juli 1993): 367–89. http://dx.doi.org/10.1142/s021819919300022x.
Der volle Inhalt der QuelleDissertationen zum Thema "Molecular diode"
Deeny, J. A. „Tunable diode laser spectroscopy“. Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253325.
Der volle Inhalt der QuelleJohnson, Simon Anthony. „Trace gas detection using diode lasers“. Thesis, University of Cambridge, 1986. https://www.repository.cam.ac.uk/handle/1810/290026.
Der volle Inhalt der QuelleLoroño, G. Marcos Antonio. „High resolution infrared diode laser spectroscopy of jet-cooled polyatomic molecules and molecular clusters“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621626.
Der volle Inhalt der QuelleHultell, Andersson Magnus S. „A Molecularly Switchable Polymer-Based Diode“. Thesis, Linköping University, Department of Science and Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1571.
Der volle Inhalt der QuelleDespite tremendous achievements, the field of conjugated polymers is still in its infancy, mimicking the more mature inorganic, i.e. silicon-based, technologies. We may though look forward to the realisation of electronic and electrochemical devices with exotic designs and device applications, as our knowledge about the fundamentals of these promising materials grow ever stronger.
My own contribution to this development, originating from an idea first put forward by my tutor, Professor Magnus Berggren, is a design for a switchable polymer-based diode. Its architecture is based on a modified version of a recently developed highly-rectifying diode,12 where an intermediate molecular layer has been incorporated in the bottom contact. Due to its unique ability to switch its internal resistance during operation, this thin layer can be used to shift the amount of (forward) current induced into the rectifying structure of the device, and by doing so shift its electrical characteristics between an insulating and a rectifying behaviour (as illustrated below). Such a component should be of great commercial interest in display technologies since it would, at least hypothetically, be able to replace the transistors presently used to address the individual matrix elements.
However, although fairly simple in theory, it proved to be quite the challenge to fabricate the device structure. Machinery errors and contact problems aside, several process routes needed to be evaluated and only a small fraction of the batches were successful. In fact, it was not until the very last day that I detected the first indications that the concept might actually work. Hence, several modifications might still be necessary to undertake in order to get the device to work properly.
Rothwell, W. J. M. „Infrared diode laser spectroscopy of free radicals and molecular ions“. Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355508.
Der volle Inhalt der QuelleLiu, Zhuan. „Infrared diode laser absorption spectroscopy of gas phase molecular ions“. Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627231.
Der volle Inhalt der QuelleDenton, Bryan John. „The application of diode lasers to atomic spectroscopy“. Thesis, University of Newcastle Upon Tyne, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316100.
Der volle Inhalt der QuelleNorton, Peter Robert. „The molecular beam epitaxy technique for PbSe-based lead chalcogenide diode lasers“. Thesis, University of Bath, 1986. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370994.
Der volle Inhalt der QuelleChan, Kit-ying Anna. „Near-ir tunable diode laser absorption spectroscopy of gaseous pollutants /“. Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19905014.
Der volle Inhalt der QuelleBrown, Philip Robert. „Diode laser spectroscopy of molecular ions and excited atoms in alternative current discharges“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315821.
Der volle Inhalt der QuelleBücher zum Thema "Molecular diode"
I, Ahmad Shamim, und Hanaoka Fumio 1946-, Hrsg. Molecular mechanisms of xeroderma pigmentosum. New York, N.Y: Springer Science+Business Media, 2008.
Den vollen Inhalt der Quelle findenVuillaume, D. Molecular electronics based on self-assembled monolayers. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.9.
Der volle Inhalt der QuelleParson, Kevin J. Wide stripe, high power diode lasers. 1992.
Den vollen Inhalt der Quelle findenLiu, Di-Jia. High resolution infrared spectroscoptic studies of molecular ions using tunable diode lasers. 1988.
Den vollen Inhalt der Quelle findenLaunay, Jean-Pierre, und Michel Verdaguer. The mastered electron: molecular electronics and spintronics, molecular machines. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0005.
Der volle Inhalt der QuelleLaunay, Jean-Pierre, und Michel Verdaguer. Electrons in Molecules. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.001.0001.
Der volle Inhalt der QuelleLaunay, Jean-Pierre, und Michel Verdaguer. The excited electron: photophysical properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0004.
Der volle Inhalt der QuelleLoosen, Peter, Reinhart Poprawe und Friedrich Bachmann. High Power Diode Lasers: Technology and Applications. Springer, 2007.
Den vollen Inhalt der Quelle findenHigh Power Diode Lasers: Technology and Applications. Springer New York, 2010.
Den vollen Inhalt der Quelle findenFerrero, Marco, Roberta Arcidiacono, Marco Mandurrino, Valentina Sola und Nicol� Cartiglia. Ultra-Fast Silicon Detectors: Design, Tests, and Performances. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Molecular diode"
Ernst, Krzysztof, und Francesco Pavone. „Overtone Molecular Spectroscopy with Diode Lasers“. In NATO ASI Series, 303–12. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2998-9_21.
Der volle Inhalt der Quellede Angelis, M., F. Marin, F. S. Pavone, G. M. Tino und M. Inguscio. „Pure Absorption Spectroscopy of Molecular Oxygen Using a CW AlGaAs Laser“. In Monitoring of Gaseous Pollutants by Tunable Diode Lasers, 257–64. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2763-9_38.
Der volle Inhalt der QuelleBlom, Cornelis E. „Plasma Diagnostics and High Resolution Spectroscopy of Molecular Ions Using Tunable Diode Lasers“. In Monitoring of Gaseous Pollutants by Tunable Diode Lasers, 159–64. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3991-2_23.
Der volle Inhalt der QuelleBauerecker, S., F. Taucher, C. Weitkamp, W. Michaelis und H. K. Cammenga. „Enclosive Flow Cooling: Concept of a New Method for Simplifying Complex Molecular Spectra“. In Monitoring of Gaseous Pollutants by Tunable Diode Lasers, 291–300. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2763-9_42.
Der volle Inhalt der QuelleStepanov, E. V., A. I. Kuznetsov, K. L. Moskalenko und A. I. Nadezhdinskii. „Fiber Optic Accessories for Molecular Spectroscopy and Gas Analysis with Tunable Diode Lasers in the Middle Infrared“. In Monitoring of Gaseous Pollutants by Tunable Diode Lasers, 203–16. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2763-9_33.
Der volle Inhalt der QuelleTalham, Daniel R., Richard M. Crooks, Vince Cammarata, Nicholas Leventis, Martin O. Schloh und Mark S. Wrighton. „Solid-State Microelectrochemical Devices: Transistor and Diode Devices Employing a Solid Polymer Electrolyte“. In Lower-Dimensional Systems and Molecular Electronics, 627–34. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2088-1_73.
Der volle Inhalt der QuelleKumar, Sunil, Pankaj Kumar Chaurasia und Sandeep K. S. Patel. „Improvement in the Efficiency of Organic Semiconductors via Molecular Doping for OLEDs Applications“. In Organic Light Emitting Diode (OLED) Toward Smart Lighting and Displays Technologies, 203–20. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003260417-10.
Der volle Inhalt der QuelleGuelachvili, G., und N. Picqué. „Molecular constants of HT16O (H16OT) at the (010) state obtained from tunable diode laser and other spectroscopic methods“. In Molecular Constants Mostly from Infrared Spectroscopy, 363–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49327-4_111.
Der volle Inhalt der QuelleGuelachvili, G., und N. Picqué. „Detectable concentration of HT16O (H16OT) at (010)–(000) transitions from 1262 to 1384 cm−1 obtained from tunable diode laser spectroscopy“. In Molecular Constants Mostly from Infrared Spectroscopy, 382. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49327-4_120.
Der volle Inhalt der QuelleGuelachvili, G., und N. Picqué. „Spectral line parameters of HD16O (H16OD) at the (010)–(000) transitions in the frequency range 1260–1342 cm−1 obtained from diode laser spectroscopy“. In Molecular Constants Mostly from Infrared Spectroscopy, 244–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49327-4_71.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Molecular diode"
Hojer, S., H. Ahlberg, S. Lundqvist, J. Davidsson und L. Holmlid. „IR Tunable Diode Laser Absorption Spectroscopy in an no Seeded Molecular Beam“. In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/laca.1987.tha4.
Der volle Inhalt der QuelleAvanessian, Tadeh, und Gisuk Hwang. „Adsorption-Controlled Thermal Diode: Nonequilibrium Molecular Dynamics Simulation“. In ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icnmm2016-7936.
Der volle Inhalt der QuelleLuhs, W., und B. Wellegehausen. „Diode Pumped Sodium Molecular Laser“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.sf2f.2.
Der volle Inhalt der QuelleWaltman, S., K. Petrov, U. Simon, L. Hollberg, F. Tittel und R. Curl. „Tunable Infrared Source by Difference Frequency Mixing Diode lasers and Diode pumped YAG, and Application to Methane Detection“. In Semiconductor Lasers: Advanced Devices and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slada.1995.mb.4.
Der volle Inhalt der QuelleMuenter, J. S. „Infrared absorption of small molecular clusters in molecular beams“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.thb2.
Der volle Inhalt der QuelleDevyatykh, Grigory G., G. A. Maksimov, Alexander I. Nadezhdinskii, V. A. Khorshev und S. M. Shapin. „Laser absorption IR-spectrometer for molecular analysis of high purity volatile substances - Detection of trace water concentrations in oxygen, argon and monogermane“. In Tunable Diode Laser Applications, herausgegeben von Alexander I. Nadezhdinskii und Alexander M. Prokhorov. SPIE, 1992. http://dx.doi.org/10.1117/12.58685.
Der volle Inhalt der QuelleLee, Seonkyung, Leyun Zhu, Ahmed Minhaj, Michael F. Hinds, A. A. Ferrante, D. H. Vu, David Rosen, Steven J. Davis und Tayyaba Hasan. „Diode laser monitor for singlet molecular oxygen“. In Biomedical Optics 2005, herausgegeben von David Kessel. SPIE, 2005. http://dx.doi.org/10.1117/12.589347.
Der volle Inhalt der QuelleBrecha, R. J., D. Krause und L. M. Pedrotti. „Laser Diode Magnetic Rotation Spectroscopy of Oxygen“. In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/orsa.1997.owc.4.
Der volle Inhalt der QuelleOsthoff, Hans D., Johnathon Walls, William A. van Wijngaarden und Wolfgang Jaeger. „Axial molecular-beam mid-infrared diode laser spectrometer“. In International Symposium on Optical Science and Technology, herausgegeben von Alan Fried. SPIE, 2002. http://dx.doi.org/10.1117/12.456560.
Der volle Inhalt der QuelleMajumder, Chiranjib, Hiroshi Mizuseki und Yoshiyuki Kawazoe. „Theoretical Analysis for a Molecular Resonant Tunneling Diode“. In 2001 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2001. http://dx.doi.org/10.7567/ssdm.2001.p-3-1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Molecular diode"
Goldstein, N., J. Lee, S. M. Adler-Golden und F. Bien. Diode laser-based sensor system for long-path absorption measurements of atmospheric concentration and near-IR molecular spectral parameters. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/10118156.
Der volle Inhalt der QuellePRINCETON UNIV NJ. Molecular Diodes: Irreversible Motion in Nanofabricated Arrays. Fort Belvoir, VA: Defense Technical Information Center, Januar 2009. http://dx.doi.org/10.21236/ada513630.
Der volle Inhalt der QuellePalilis, Leonidas C., Antti J. Maekinen, Hideyuki Murata, Manabu Uchida und Zakya H. Kafafi. Efficient Molecular Organic Light-Emitting Diodes Based on Silole Derivatives. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada447724.
Der volle Inhalt der Quelle