Dissertationen zum Thema „Modulation of oncogene expression“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Modulation of oncogene expression" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Appleby, Mark William. „Oncogene expression and the modulation of keratinocyte self renewal“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306476.
Der volle Inhalt der QuelleCristofari, Camilla. „Non Canonical structures within MYC and BCL2 oncogenes: novel targets for gene expression modulation“. Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422715.
Der volle Inhalt der QuelleOggigiorno una delle “piaghe” che affligge maggiormente la popolazione mondiale è il cancro. Il trattamento di queste forme neoplastiche sfrutta agenti chemioterapici e radioterapici, caratterizzati da numerose limitazioni legate ai notevoli effetti collaterali, alla tossicità e alla selezione di fenotipi resistenti a tali terapie. Ciò ha portato allo sviluppo delle targeted therapy, che sfruttano entità chimiche (small molecules, anticorpi monoclonali, miRNA, siRNA ecc.) selettive per un bersaglio molecolare caratteristico del fenotipo tumorale. Nonostante più mirati anche questi approcci presentano degli effetti collaterali Pertanto la modulazione dell’espressione genica che sfrutta la capacità degli acidi nucleici di assumere differenti conformazioni, definite non canoniche, ha destato sempre più interesse. Tra le possibili strutture non canoniche di notevole interesse sono le conformazioni tetraelicoidali note come G-quadruplex (G4) e i-Motif (iM). La struttura G4 è propria di sequenze di DNA e RNA contenenti un’elevata abbondanza di guanine consecutive che, mediante legami a idrogeno di tipo Hoogstein, generano delle strutture planari chiamate tetradi. Dall’’impilamento di due o più tetradi si genera la struttura a tetraelica. Poiché il DNA è una doppia elica, il filamento complementare a queste regioni G ricche presenta un’elevata abbondanza di citosine. Anche questi domini in particolari condizioni ambientali, possono generare una conformazione tetraelicoidale, nota come i-Motif. A differenza del G4, il building block dell’intera struttura è un dimero di citosine stabilizzato dalla presenza di tre legami a idrogeno. In vivo l’esistenza di queste conformazioni, genera una sorta d’ingombro sterico a livello del DNA e ciò presuppone un effetto d’inibizione/attivazione del processo di elongazione del telomero o del processo trascrizionale. Sotto la supervisione del Dott. Laurence J. Hurley, è stata implementata la caratterizzazione strutturale della stringa di citosine contenute nel promotore del gene MYC. In seguito un selezionato ligando è stato testato con l’idea di poter modulare il processo di folding/unfolding alla base dell’attivazione trascrizionale. Infine, l’effetto mediato da questo composto sul processo apoptotico è stato preso in considerazione lavorando su una selezionata linea cellulare. Di notevole interesse sono le regioni GC-ricche contenute nella porzione non tradotta del trascritto primario (mRNA). Sulla base di ciò, in questo progetto, sono state prese in considerazioni, le stringhe di guanina e citosina contenute nella regione del 5’-UTR, sia a livello del DNA sia del RNA, del gene BCL2. Inizialmente è stato condotto uno studio di caratterizzazione sulle sequenze minimali dBcl2_G, dBcl2_C e rBcl2_G. In seguito è stato preso in considerazione l’effetto della presenza di nucleotidi adiacenti sul processo di folding verso il G-quadruplex (dBcl2_G + 3WC, rBcl2_G + 3WC e rBcl2_48). I dati ottenuti dimostrano che le sequenze dBcl2_G e rBcl2_G sono in grado di assumere molteplici conformazioni G4. La presenza di nucleotidi addizionali modula la loro capacità di assumere queste conformazioni. In particolare, la presenza di tre appaiamenti WC impedisce parzialmente la formazione del G4 sia nel DNA, che nel RNA mentre, l’aggiunta di un maggior numero di basi (rBcl2_48) sposta l’equilibrio conformazionale verso una conformazione in forte competizione con il G4. Per la sequenza ricca di citosine, l’equilibrio conformazionale è stato valutato sia in ambiente blandamente acido, che in un ambiente che mima la condizione fisiologica. Infine, poiché negli ultimi anni è stata dimostrata la capacità di alcuni ligandi sintetici/naturali, di spostare gli equilibri conformazionali del DNA, dalla classica forma a doppio filamento, verso queste conformazioni tetraelicoidali, una selezionata libreria di composti è stata, scrinata allo scopo di individuare un ligando in grado di riconoscere e stabilizzare selettivamente una conformazione al pari di un'altra.
Froux, Aurane. „G-quadruplex binding by transition metal complexes : the whole pathway from design to synthesis, to in cellulo anticancer investigations“. Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0206_FROUX.pdf.
Der volle Inhalt der QuelleTriple-negative breast cancer and pancreatic adenocarcinoma are associated to very low survival-rates due to their high resistance to conventional treatments, posing significant public healthiness issue. The development of new targeted therapeutic options is then crucial. G-rich sequences in nucleic acids can form non-conventional secondary structures, known as G-quadruplexes, identified in telomeric sequences and in the promoters of potent oncogenes, such as cMYC, cKIT, and BCL2. These structures play a critical role in regulating gene expression, making them as promising therapeutic targets in cancer treatment.In this study, we employed a transdisciplinary approach, integrating chemical synthesis, molecular dynamic simulations, and cellular and molecular biology, to identify novel G-quadruplex binders and stabilizers aimed at controlling cancer progression. Previous work in our laboratory demonstrated that symmetric planar metal complexes could specifically bind these structures. In that sense, we synthesized 12 new transition metal complexes of Zn2+, Ni2+, Cu2+, Pd2+ and Pt2+, from the Salphen scaffold. Their ability to selectively bind and stabilize G-quadruplexes over double-stranded DNA were confirmed. Molecular dynamic simulations revealed an unconventional binding mode involving interaction with the G-quadruplex loop.Immunofluorescence assays confirmed that the compounds enhance G-quadruplex formation, in cancer cell lines, leading to the early downregulation of several G-quadruplex-driven oncogenes, such as kRAS, RET, and cMYC. This downregulation reduced cancer cell proliferation and viability, with less effect on non-cancerous cells.Some complexes induced apoptosis in cancer cells without affecting the non-neoplastic cells, after decreased hRAS and cMYC transcript levels, while other compounds caused DNA damage in pancreatic cancer cells T3M4. Notably, Zn2+ compounds increased VEGF-A expression, enhancing its transcription. We also investigated the effects of G-quadruplex stabilization on macrophages polarization, showing that nickel compounds promoted the polarization of M0 macrophages towards the anticancer M1 phenotype, while inhibiting the acquisition of pro-tumoral M2 markers.Overall, our novel metal complexes demonstrate significant potential in stabilizing G-quadruplex and exhibit promising anticancer properties, including modulation of the tumor microenvironment. These preliminary results suggest avenues for further research, with potential implications for advancing strategies in cancer therapy
Rost, Nathalie. „Expression et régulation du gène de la proenképhaline dans un modèle expérimental de tumeur cérébrale chez le rat“. Grenoble 1, 1991. http://www.theses.fr/1991GRE10048.
Der volle Inhalt der QuelleEllis, D. K. „Cellular oncogene expression during retinal transdifferentiation“. Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371121.
Der volle Inhalt der QuelleChan, Yuk Fai. „Manipulation of EWS oncogene expression using RNAi /“. View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?BIOL%202005%20CHAN.
Der volle Inhalt der QuelleRadhakrishnan, Vijayababu, Charles Putnam, Wenqing Qi und Jesse Martinez. „P53 suppresses expression of the 14-3-3gamma oncogene“. BioMed Central, 2011. http://hdl.handle.net/10150/610345.
Der volle Inhalt der QuelleWatson, Dorothy M. A. „Cyclic nucleotide binding and oncogene expression in breast cancer“. Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/19398.
Der volle Inhalt der QuelleAmouyel, Philippe. „Expression des proto-oncogenes ets dans les astrocytes et dans les tumeurs astrocytaires“. Lille 2, 1988. http://www.theses.fr/1988LIL2M054.
Der volle Inhalt der QuelleRitchie, Andrew John. „Endocrinology, oncogene expression and outcome in carcinoma of the lung“. Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357457.
Der volle Inhalt der QuelleRichards, Sally. „Inhibition of oncogene expression by the formation of Triplex DNA“. Thesis, Institute of Cancer Research (University Of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368703.
Der volle Inhalt der QuelleFaulkner, Lee. „Expression of the c-fgr proto-oncogene in monoblastoid cells“. Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309109.
Der volle Inhalt der QuelleMarcos-Gutierrez, Camelia Victoria. „Expression, function and conservation of the c-Ret proto-oncogene“. Thesis, Open University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361457.
Der volle Inhalt der QuelleWilliams, Alistair Robert William. „Expression of oncogenes in human colorectal neoplasms“. Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/19415.
Der volle Inhalt der QuelleChung, Maureen. „Expression of the c-fos proto-oncogene, mutant p53 anti-oncogene and statin in colorectal carcinoma and adjacent mucosa“. Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=56961.
Der volle Inhalt der QuelleMenzel, Garry Edward. „Regulation of proto-oncogene expression during mitogenic activation of T-cells“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315120.
Der volle Inhalt der QuelleDemoly, Pascal. „Expression du proto-oncogene c-fos dans l'epithelium bronchique de l'asthmatique“. Montpellier 1, 1992. http://www.theses.fr/1992MON11169.
Der volle Inhalt der QuelleShipillis, Nicholas. „Investigation of system properties related to MYCN oncogene expression in neuroblastoma“. Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/investigation-of-system-properties-related-to-mycn-oncogene-expression-in-neuroblastoma(2e3ba06b-faec-449e-85be-730213e697b9).html.
Der volle Inhalt der QuelleTuthill, Matthew Charles. „N-myc oncogene expression in neuroblastoma is dependent on Sp1 and Sp3“. Thesis, University of Hawaii at Manoa, 2003. http://hdl.handle.net/10125/987.
Der volle Inhalt der QuelleRao, Mira A. „Regulated expression of the v-rel oncogene in vitro and in vivo“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0026/MQ50863.pdf.
Der volle Inhalt der QuelleLiang, Huiling. „Genomic structure and expression of the MDM2 proto-oncogene in human cancer“. Thesis, University of Newcastle Upon Tyne, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297574.
Der volle Inhalt der QuelleAkbay, Burkitkan. „Regulation of the Akt/mTORC1 Pathway by HIV Transcriptional Activator Tat in B Cells Modulation of mTORC1 Signaling Pathway by HIV-1 Production of Stable Cell Lines on the Basis of the Cultured RPMI 8866 B-Cells with Constant and Inducible Expression of the Human Immunodeficiency Virus Tat Protein HIV-1 Tat Activates Akt/mTORC1 Pathway and AICDA Expression by Downregulating Its Transcriptional Inhibitors in B Cells“. Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL026.
Der volle Inhalt der QuelleAggressive B cell lymphomas are the main cause of death in HIV-1 infected individuals, although B cells are not targeted by the virus. The exact mechanisms of the development of these lymphomas are not known. Previous studies of our team revealed that HIV-1 Tat can penetrate B cells, where it can induce ROS production, DNA damage and increase the chances of the oncogenic translocations specific for Burkitt lymphoma. In addition in many immune cells HIV-1 and its proteins (e.g. Tat) can regulate Akt/mTORC1 pathway, a central integrator of many intra and extracellular signals including viral infection and DNA damage. However, no studies have examined the regulation of Akt/mTORC1 pathway by Tat in B cells. In this thesis I have tested the hypothesis that HIV-1 Tat might produce oncogenic effects in B cells by modulating Akt/mTORC1 signaling pathway and regulating expression of genes involved in lymphomagenesis. I found that HIV-1 Tat activated Akt/mTORC1 signaling pathway, which leads to aberrant activation of AICDA (activation induced cytidine deaminase) due to inhibition of AICDA transcriptional repressors c-Myb and E2F8. These perturbations may ultimately lead to an increased genomic instability and proliferation that might cause B cell malignancies
El, Khyari Saïd. „Implication des oncogenes nucleaires et de surface dans les mecanismes cellulaires de chimioresistance“. Aix-Marseille 2, 1993. http://www.theses.fr/1993AIX22951.
Der volle Inhalt der QuelleCandelière, G. Antonio (Giuseppe Antonio). „Expression of the c-fos proto-oncogene during normal and pathological bone development“. Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=28429.
Der volle Inhalt der QuelleGrover, Rajiv. „Oncogene expression in malignant melanoma : markers of prognosis and targets for gene therapy“. Thesis, Queen Mary, University of London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266579.
Der volle Inhalt der QuelleFeller, J. Kyle. „Correlation of amplification and expression of the c-myc oncogene in Kaposi's sarcoma“. Thesis, Boston University, 2012. https://hdl.handle.net/2144/12373.
Der volle Inhalt der QuelleThe c-myc proto-oncogene is involved in various cellular processes including cell growth, proliferation, and apoptosis. Overexpression and deregulated expression of the gene have been previously linked to several lineage-unrelated, aggressive, poorly differentiated tumors. Oncogenic expression of c-myc has also been implicated in several vascular neoplasms as having a crucial role in angiogenesis. This gives c-myc a dual oncogenic function in that tumor growth requires both cell proliferation and angiogenesis to ensure survival and confer an effective malignancy. In vitro studies have shown that the c-Myc protein is an important regulatory molecule of spindle cell proliferation and migration in Kaposi's sarcoma (KS), an angioproliferative tumor that is commonly associated with HIV. In light of the above and recent findings demonstrating amplification of c-myc in select angiosarcomas secondary to irradiation or chronic lymphedema, our primary aim was to ascertain the same in KS. We also attempted to determine what correlation existed, if any, between the immunohistochemical (IHC) expression of the c-Myc protein and c-myc gene copy amplification using fluorescent in situ hybridization (FISH). Samples analyzed during this study included archival tissue samples of KS (N=24 ). For FISH analyses, a dual-labeled technique was employed and probes against the c-myc gene and chromosome 8 (CEP-8) were used. For IHC, the monoclonal anti-c-myc antibody, 9E10, was used and tissue from hemangiomas (N=11) and non-radiation induced angiosarcomas (N=6) served as the controls. PCR for detection of KS-associated herpesvirus (KSHV) DNA was performed on all KS cases. While FISH analyses revealed no amplification of c-myc in any of the cases of KS, IHC analyses revealed positive staining for c-Myc in 13/24 cases (54%) with stain localization throughout the cell. As such, no correlation could be found between gene amplification and protein expression. KSHV-PCR analyses revealed that 19/24 cases (79%) were positive for KSHV-DNA. Ten of 24 cases (42%) were positive for c-Myc IHC and KSHV-PCR, while one case (4%) was negative for both indicating a lack of correlation (using McNemar's test for statistical analysis) between c-Myc IHC protein levels and presence of KSHVDNA. Our findings indicate that c-myc gene amplification is not normally found in KS and cannot be correlated with the expression of the c-Myc protein. Thus, unlike other tumors we have discussed where gene amplification was a common occurrence; it seems to have little clinical significance in KS. The absence of c-myc amplification raises the question of why 54% of the samples in this study still exhibited protein expression as determined by IHC. To grasp a further understanding of what is truly going on in these cases, it would be necessary to use techniques such as RT-PCR or in situ hybridization to study c-myc at the RNA level.
Lanaud, Philippe. „Etude de l'expression neuronale des oncogenes a expression immediate et precoce dans differents modeles d'epilepsie chez le rat“. Besançon, 1992. http://www.theses.fr/1992BESA3711.
Der volle Inhalt der QuelleBauters, Christophe. „Expression des oncogenes nucleaires c-myc et c-fos dans les surcharges hemodynamiques du coeur de rat adulte“. Lille 2, 1990. http://www.theses.fr/1990LIL2M006.
Der volle Inhalt der QuelleProtopopova, Marina. „Modulation of activity of the tumour suppressor p53 by small molecules and damaged DNA /“. Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-926-9/.
Der volle Inhalt der QuelleMARECHAL, GAEL. „Oestrogenes et expression de l'oncogene c-fos dans les cellules d'endometres de cobaye en culture primaire“. Besançon, 1991. http://www.theses.fr/1991BESA3086.
Der volle Inhalt der QuelleSharma, R. „Modulation of carbohydrate expression in intestinal mucosa“. Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285783.
Der volle Inhalt der QuelleUrcia, Roby Joseph. „The modulation of tumour suppressor MST2 and proto-oncogene Raf-1 kinases by the scaffold protein CNK1“. Thesis, University of Glasgow, 2011. http://theses.gla.ac.uk/4183/.
Der volle Inhalt der QuelleRitchie, Andrew John. „Endocrinology, oncogene and tumour suppressor gene expression in Barrett's oesophagus, oesophageal and gastric cardia carcinoma“. Thesis, Queen's University Belfast, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238950.
Der volle Inhalt der QuelleBradbury, Andrew W. „Cyclic AMP binding proteins and ras p21 oncogene expression in human colorectal cancer and mucosa“. Thesis, University of Edinburgh, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531024.
Der volle Inhalt der QuelleRotondetto, Salvatore. „Modulation of antioxidant enzyme expression in mononuclear phagocytes“. Thesis, Keele University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287976.
Der volle Inhalt der QuelleGaldemard, Catherine. „Regulation transcriptionnelle de l'expression du proto-oncogene fgf-3 dans les cellules d'adenocarcinome du colon humain : bases fondamentales de l'oncogenese)“. Paris 11, 1997. http://www.theses.fr/1997PA11T006.
Der volle Inhalt der Quelle林秀華 und Sau-wah Selma Lin. „Modulation of cyclin expression by over-expression of the forkhead boxtranscription factor FoxM1“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31224817.
Der volle Inhalt der QuelleAdenis, Antoine. „Recepteurs d'hormones et de facteur de croissance, proteinases, produits d'oncogene et d'anti-oncogene, dans les cancers colorectaux humains ; expression et valeur pronostique“. Lille 2, 1997. http://www.theses.fr/1997LIL2T010.
Der volle Inhalt der QuelleGonzalez, Veronica. „Defining the Role of Nucleolin on the Transcriptional Regulation of c-MYC through Modulation of the c-MYC NHE III1 Element“. Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/195898.
Der volle Inhalt der QuelleZhang, Yi [Verfasser], Rosalia [Gutachter] Deeken und Wolfgang [Gutachter] Dröge-Laser. „Regulation of Agrobacterial Oncogene Expression in Host Plants / Yi Zhang. Gutachter: Rosalia Deeken ; Wolfgang Dröge-Laser“. Würzburg : Universität Würzburg, 2014. http://d-nb.info/1102827614/34.
Der volle Inhalt der QuellePleasant, Chaucola K. „TARGETING EXPRESSION OF AN ONCOGENE BY SPLICING INTERFERENCE (SPLICEi) IN HUMAN MAMMARY CARCINOMA CELL CULTURE MODEL“. Cleveland State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=csu1328206596.
Der volle Inhalt der QuelleAhn, Misol. „Modulation of the neuronal voltage-gated sodium channel Nav1.2 by the non-receptor tyrosine kinase fyn /“. Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/6260.
Der volle Inhalt der QuelleZhang, Fan. „Modulation of genomic expression in the central nervous system“. Doctoral thesis, Universite Libre de Bruxelles, 1997. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212219.
Der volle Inhalt der QuelleVani, Susheel Narendra. „Pharmacologic modulation of endometrial intracrinology and steroid receptor expression“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/25269.
Der volle Inhalt der QuelleHutschenreuther, Antje, Marina Bigl, Nasr Y. A. Hemdan, Tewodros Debebe, Frank Gaunitz und Gerd Birkenmeier. „Modulation of GLO1 expression affects malignant properties of cells“. Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-217965.
Der volle Inhalt der QuelleHutschenreuther, Antje, Marina Bigl, Nasr Y. A. Hemdan, Tewodros Debebe, Frank Gaunitz und Gerd Birkenmeier. „Modulation of GLO1 expression affects malignant properties of cells“. MDPI, 2016. https://ul.qucosa.de/id/qucosa%3A15256.
Der volle Inhalt der QuelleXue, Liting. „Oncogene Function in Pre-Leukemia Stage of INV(16) Acute Myeloid Leukemia: A Dissertation“. eScholarship@UMMS, 2014. https://escholarship.umassmed.edu/gsbs_diss/740.
Der volle Inhalt der QuelleXue, Liting. „Oncogene Function in Pre-Leukemia Stage of INV(16) Acute Myeloid Leukemia: A Dissertation“. eScholarship@UMMS, 2010. http://escholarship.umassmed.edu/gsbs_diss/740.
Der volle Inhalt der QuelleHamon, Martial. „Expression des oncogenes nucleaires dans l'aorte de lapin apres angioplastie : influence de l'heparine sur l'expression de c-myc, c-fos et c-jun“. Lille 2, 1991. http://www.theses.fr/1991LIL2M347.
Der volle Inhalt der QuelleOpitz, Armin Walter. „Structural and functional investigations of a molecular imaging nanoparticle for magnetic resonance imaging of oncogene expression in the pancreas“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 490 p, 2008. http://proquest.umi.com/pqdweb?did=1459924631&sid=13&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Der volle Inhalt der QuellePrincipal faculty advisors: Norman J. Wagner, Dept. of Chemical Engineering, University of Delaware; Eric Wickstrom, Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University. Includes bibliographical references.