Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Modulation of oncogene expression“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Modulation of oncogene expression" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Modulation of oncogene expression"
Seldin, M. F., J. D. Mountz, J. F. Mushinski, H. R. Smith und A. D. Steinberg. „IL-2 Modulation of Murine T-Cell Oncogene Expression“. Experimental Biology and Medicine 184, Nr. 2 (01.02.1987): 186–90. http://dx.doi.org/10.3181/00379727-184-42465.
Der volle Inhalt der QuelleHarel-Bellan, Annick, und William L. Farrar. „Modulation of proto-oncogene expression by colony stimulating factors“. Biochemical and Biophysical Research Communications 148, Nr. 3 (November 1987): 1001–8. http://dx.doi.org/10.1016/s0006-291x(87)80231-0.
Der volle Inhalt der QuelleSpirin, P. V., N. A. Nikitenko, T. D. Lebedev, P. M. Rubtsov, C. Stocking und V. S. Prasolov. „Modulation of activated oncogene c-kit expression with RNA-interference“. Molecular Biology 45, Nr. 6 (Dezember 2011): 950–58. http://dx.doi.org/10.1134/s0026893311060136.
Der volle Inhalt der QuelleSarno, Federica, Désirée Goubert, Emilie Logie, Martijn G. S. Rutten, Mihaly Koncz, Christophe Deben, Anita E. Niemarkt et al. „Functional Validation of the Putative Oncogenic Activity of PLAU“. Biomedicines 11, Nr. 1 (30.12.2022): 102. http://dx.doi.org/10.3390/biomedicines11010102.
Der volle Inhalt der QuelleKakhlon, O., Y. Gruenbaum und Z. I. Cabantchik. „Repression of ferritin expression modulates cell responsiveness to H-ras-induced growth“. Biochemical Society Transactions 30, Nr. 4 (01.08.2002): 777–80. http://dx.doi.org/10.1042/bst0300777.
Der volle Inhalt der QuelleLehtola, L., M. Nistér, E. Hölttä, B. Westermark und K. Alitalo. „Down-regulation of cellular platelet-derived growth factor receptors induced by an activated neu receptor tyrosine kinase.“ Cell Regulation 2, Nr. 8 (August 1991): 651–61. http://dx.doi.org/10.1091/mbc.2.8.651.
Der volle Inhalt der QuelleBell, S. M., D. C. Connolly, N. J. Maihle und J. L. Degen. „Differential modulation of plasminogen activator gene expression by oncogene-encoded protein tyrosine kinases“. Molecular and Cellular Biology 13, Nr. 9 (September 1993): 5888–97. http://dx.doi.org/10.1128/mcb.13.9.5888-5897.1993.
Der volle Inhalt der QuelleBell, S. M., D. C. Connolly, N. J. Maihle und J. L. Degen. „Differential modulation of plasminogen activator gene expression by oncogene-encoded protein tyrosine kinases.“ Molecular and Cellular Biology 13, Nr. 9 (September 1993): 5888–97. http://dx.doi.org/10.1128/mcb.13.9.5888.
Der volle Inhalt der QuelleCodony, Carles, Sònia Guil, Concha Caudevilla, Dolors Serra, Guillermina Asins, Adolf Graessmann, Fausto G. Hegardt und Montse Bach-Elias. „Modulation in vitro of H-ras oncogene expression by trans-splicing“. Oncogene 20, Nr. 28 (Juni 2001): 3683–94. http://dx.doi.org/10.1038/sj.onc.1204473.
Der volle Inhalt der QuellePierotti, Marco A., Maria G. Borrello, Italia Bongarzone, Maria R. Cattadori Rosangela Donghi, Piera Mondellini, Catia Traversari und Giuseppe Della Porta. „Modulation of the human Ha--1 oncogene expression by DNA methylation“. European Journal of Cancer and Clinical Oncology 23, Nr. 11 (November 1987): 1788–89. http://dx.doi.org/10.1016/0277-5379(87)90683-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Modulation of oncogene expression"
Appleby, Mark William. „Oncogene expression and the modulation of keratinocyte self renewal“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306476.
Der volle Inhalt der QuelleCristofari, Camilla. „Non Canonical structures within MYC and BCL2 oncogenes: novel targets for gene expression modulation“. Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422715.
Der volle Inhalt der QuelleOggigiorno una delle “piaghe” che affligge maggiormente la popolazione mondiale è il cancro. Il trattamento di queste forme neoplastiche sfrutta agenti chemioterapici e radioterapici, caratterizzati da numerose limitazioni legate ai notevoli effetti collaterali, alla tossicità e alla selezione di fenotipi resistenti a tali terapie. Ciò ha portato allo sviluppo delle targeted therapy, che sfruttano entità chimiche (small molecules, anticorpi monoclonali, miRNA, siRNA ecc.) selettive per un bersaglio molecolare caratteristico del fenotipo tumorale. Nonostante più mirati anche questi approcci presentano degli effetti collaterali Pertanto la modulazione dell’espressione genica che sfrutta la capacità degli acidi nucleici di assumere differenti conformazioni, definite non canoniche, ha destato sempre più interesse. Tra le possibili strutture non canoniche di notevole interesse sono le conformazioni tetraelicoidali note come G-quadruplex (G4) e i-Motif (iM). La struttura G4 è propria di sequenze di DNA e RNA contenenti un’elevata abbondanza di guanine consecutive che, mediante legami a idrogeno di tipo Hoogstein, generano delle strutture planari chiamate tetradi. Dall’’impilamento di due o più tetradi si genera la struttura a tetraelica. Poiché il DNA è una doppia elica, il filamento complementare a queste regioni G ricche presenta un’elevata abbondanza di citosine. Anche questi domini in particolari condizioni ambientali, possono generare una conformazione tetraelicoidale, nota come i-Motif. A differenza del G4, il building block dell’intera struttura è un dimero di citosine stabilizzato dalla presenza di tre legami a idrogeno. In vivo l’esistenza di queste conformazioni, genera una sorta d’ingombro sterico a livello del DNA e ciò presuppone un effetto d’inibizione/attivazione del processo di elongazione del telomero o del processo trascrizionale. Sotto la supervisione del Dott. Laurence J. Hurley, è stata implementata la caratterizzazione strutturale della stringa di citosine contenute nel promotore del gene MYC. In seguito un selezionato ligando è stato testato con l’idea di poter modulare il processo di folding/unfolding alla base dell’attivazione trascrizionale. Infine, l’effetto mediato da questo composto sul processo apoptotico è stato preso in considerazione lavorando su una selezionata linea cellulare. Di notevole interesse sono le regioni GC-ricche contenute nella porzione non tradotta del trascritto primario (mRNA). Sulla base di ciò, in questo progetto, sono state prese in considerazioni, le stringhe di guanina e citosina contenute nella regione del 5’-UTR, sia a livello del DNA sia del RNA, del gene BCL2. Inizialmente è stato condotto uno studio di caratterizzazione sulle sequenze minimali dBcl2_G, dBcl2_C e rBcl2_G. In seguito è stato preso in considerazione l’effetto della presenza di nucleotidi adiacenti sul processo di folding verso il G-quadruplex (dBcl2_G + 3WC, rBcl2_G + 3WC e rBcl2_48). I dati ottenuti dimostrano che le sequenze dBcl2_G e rBcl2_G sono in grado di assumere molteplici conformazioni G4. La presenza di nucleotidi addizionali modula la loro capacità di assumere queste conformazioni. In particolare, la presenza di tre appaiamenti WC impedisce parzialmente la formazione del G4 sia nel DNA, che nel RNA mentre, l’aggiunta di un maggior numero di basi (rBcl2_48) sposta l’equilibrio conformazionale verso una conformazione in forte competizione con il G4. Per la sequenza ricca di citosine, l’equilibrio conformazionale è stato valutato sia in ambiente blandamente acido, che in un ambiente che mima la condizione fisiologica. Infine, poiché negli ultimi anni è stata dimostrata la capacità di alcuni ligandi sintetici/naturali, di spostare gli equilibri conformazionali del DNA, dalla classica forma a doppio filamento, verso queste conformazioni tetraelicoidali, una selezionata libreria di composti è stata, scrinata allo scopo di individuare un ligando in grado di riconoscere e stabilizzare selettivamente una conformazione al pari di un'altra.
Froux, Aurane. „G-quadruplex binding by transition metal complexes : the whole pathway from design to synthesis, to in cellulo anticancer investigations“. Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0206_FROUX.pdf.
Der volle Inhalt der QuelleTriple-negative breast cancer and pancreatic adenocarcinoma are associated to very low survival-rates due to their high resistance to conventional treatments, posing significant public healthiness issue. The development of new targeted therapeutic options is then crucial. G-rich sequences in nucleic acids can form non-conventional secondary structures, known as G-quadruplexes, identified in telomeric sequences and in the promoters of potent oncogenes, such as cMYC, cKIT, and BCL2. These structures play a critical role in regulating gene expression, making them as promising therapeutic targets in cancer treatment.In this study, we employed a transdisciplinary approach, integrating chemical synthesis, molecular dynamic simulations, and cellular and molecular biology, to identify novel G-quadruplex binders and stabilizers aimed at controlling cancer progression. Previous work in our laboratory demonstrated that symmetric planar metal complexes could specifically bind these structures. In that sense, we synthesized 12 new transition metal complexes of Zn2+, Ni2+, Cu2+, Pd2+ and Pt2+, from the Salphen scaffold. Their ability to selectively bind and stabilize G-quadruplexes over double-stranded DNA were confirmed. Molecular dynamic simulations revealed an unconventional binding mode involving interaction with the G-quadruplex loop.Immunofluorescence assays confirmed that the compounds enhance G-quadruplex formation, in cancer cell lines, leading to the early downregulation of several G-quadruplex-driven oncogenes, such as kRAS, RET, and cMYC. This downregulation reduced cancer cell proliferation and viability, with less effect on non-cancerous cells.Some complexes induced apoptosis in cancer cells without affecting the non-neoplastic cells, after decreased hRAS and cMYC transcript levels, while other compounds caused DNA damage in pancreatic cancer cells T3M4. Notably, Zn2+ compounds increased VEGF-A expression, enhancing its transcription. We also investigated the effects of G-quadruplex stabilization on macrophages polarization, showing that nickel compounds promoted the polarization of M0 macrophages towards the anticancer M1 phenotype, while inhibiting the acquisition of pro-tumoral M2 markers.Overall, our novel metal complexes demonstrate significant potential in stabilizing G-quadruplex and exhibit promising anticancer properties, including modulation of the tumor microenvironment. These preliminary results suggest avenues for further research, with potential implications for advancing strategies in cancer therapy
Rost, Nathalie. „Expression et régulation du gène de la proenképhaline dans un modèle expérimental de tumeur cérébrale chez le rat“. Grenoble 1, 1991. http://www.theses.fr/1991GRE10048.
Der volle Inhalt der QuelleEllis, D. K. „Cellular oncogene expression during retinal transdifferentiation“. Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371121.
Der volle Inhalt der QuelleChan, Yuk Fai. „Manipulation of EWS oncogene expression using RNAi /“. View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?BIOL%202005%20CHAN.
Der volle Inhalt der QuelleRadhakrishnan, Vijayababu, Charles Putnam, Wenqing Qi und Jesse Martinez. „P53 suppresses expression of the 14-3-3gamma oncogene“. BioMed Central, 2011. http://hdl.handle.net/10150/610345.
Der volle Inhalt der QuelleWatson, Dorothy M. A. „Cyclic nucleotide binding and oncogene expression in breast cancer“. Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/19398.
Der volle Inhalt der QuelleAmouyel, Philippe. „Expression des proto-oncogenes ets dans les astrocytes et dans les tumeurs astrocytaires“. Lille 2, 1988. http://www.theses.fr/1988LIL2M054.
Der volle Inhalt der QuelleRitchie, Andrew John. „Endocrinology, oncogene expression and outcome in carcinoma of the lung“. Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357457.
Der volle Inhalt der QuelleBücher zum Thema "Modulation of oncogene expression"
Darley, Richard Lawrence. Modulation of major histocompatibility antigen expression by the ras oncogene in murine fibroblast cells. [s.l.]: typescript, 1992.
Den vollen Inhalt der Quelle findenTravers, Helen. Oncogene regulation of gene expression. Manchester: University of Manchester, 1996.
Den vollen Inhalt der Quelle findenMorgan, James I. Proto-Oncogene expression in the nervous /system. Amsterdam: Published by Elsevier for the Foundation for the study of the Nervous System (FESN), 1991.
Den vollen Inhalt der Quelle findenDetta, Allah. Proliferative potential and proto-oncogene expression in human meningioma. Birmingham: Universityof Birmingham, 1993.
Den vollen Inhalt der Quelle findenRowley, S. Nuclear oncogene expression in the prognosis of colorectal cancer. Birmingham: University of Birmingham, 1990.
Den vollen Inhalt der Quelle findenEric, Blair G., Pringle Craig R und Maudsley D. John, Hrsg. Modulation of MHC antigen expression and disease. Cambridge: Cambridge University Press, 1995.
Den vollen Inhalt der Quelle findenRottleb, Christoph. Modulation der c-myc-Expression durch exogene Stimuli. [s.l.]: [s.n.], 1991.
Den vollen Inhalt der Quelle findenLuo, Jiin-Chyuan John. Blood oncoprotein expression in colonic neoplasia. [New York]: Columbia University, School of Public Health, 1994.
Den vollen Inhalt der Quelle findenS, Denison Michael, und Helferich William, Hrsg. Toxicant-receptor interactions: Modulation of signal transduction and gene expression. Washington, DC: Taylor & Francis, 1998.
Den vollen Inhalt der Quelle findenPalese, Peter, Hrsg. Modulation of Host Gene Expression and Innate Immunity by Viruses. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3242-0.
Der volle Inhalt der QuelleBuchteile zum Thema "Modulation of oncogene expression"
Nakaishi, Hitoshi. „Functionally Distinct Oncogenes Differently Regulate Cellular Expression of Gangliosides“. In Gangliosides and Modulation of Neuronal Functions, 325–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71932-5_30.
Der volle Inhalt der QuelleMcCarty, K. S., und K. S. McCarty. „Steroid modulation of the expression of growth factors and oncogenes in breast cancer“. In Regulatory Mechanisms in Breast Cancer, 197–220. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3940-7_9.
Der volle Inhalt der QuelleRobins, Roland K., Rick A. Finch und Thomas L. Avery. „Nucleoside and Nucleotide Modulation of Oncogenic Expression: A New Approach to Cancer Chemotherapy“. In Anticancer Drug Discovery and Development: Natural Products and New Molecular Models, 149–82. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2610-0_9.
Der volle Inhalt der QuelleKlement, V. „Radiation-Enhanced Oncogene Expression“. In Realm of Tolerance, 180–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74712-0_21.
Der volle Inhalt der QuelleHöfler, H. „Oncogene and Receptor Expression“. In Current Topics in Pathology, 435–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75515-6_12.
Der volle Inhalt der QuelleSasaki, Yutaka, Norio Hayashi, Masayoshi Horimoto, Toshifumi Ito, Hideyuki Fusamoto und Takenobu Kamada. „Oncogene Expression in Liver Injury“. In Liver and Environmental Xenobiotics, 151–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-12385-0_12.
Der volle Inhalt der QuelleBaker, Vicki V. „Oncogene expression in cervical cancer“. In Gynecologic Oncology, 43–51. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2598-1_4.
Der volle Inhalt der QuelleIchimura, Koichi, Kimiyoshi Hirakawa, Atsushi Komatsuzaki und Yasuhito Yuasa. „Oncogene Expression in Acoustic Neurinomas“. In Biological Aspects of Brain Tumors, 337–42. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68150-2_45.
Der volle Inhalt der QuelleSymonds, R. P., T. Habeshaw, J. Paul, D. J. Kerr, A. Darling, R. A. Burnett, F. Sotsiou, S. Linardopoulos und D. A. Spandidos. „Oncogene Expression and Cervical Cancer“. In The Superfamily of ras-Related Genes, 277–83. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6018-6_30.
Der volle Inhalt der QuelleMurphy, Gretchen A., und Channing J. Der. „Ras-Mediated Deregulation of Gene Expression and Contribution to Oncogenesis“. In Oncogene-Directed Therapies, 77–99. Totowa, NJ: Humana Press, 2003. https://doi.org/10.1007/978-1-59259-313-2_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Modulation of oncogene expression"
Wang, Pengpeng, Zhan Wang, Peng You und Yiyue Liu. „Construction of the Unified Coded Expression for Intra-Pulse Phase Modulation in Pulse Radar“. In 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/icmmt61774.2024.10671868.
Der volle Inhalt der QuelleChakrabarti, Mrinmay, James S. Norris, Naren L. Banik und Swapan K. Ray. „Abstract 1101: Modulation of expression of specific oncogenic and tumor suppressor microRNAs enhanced therapeutic efficacy of 4-HPR and EGCG in human malignant neuroblastoma cells“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1101.
Der volle Inhalt der QuelleFeng, Gong, Patricia Hicks, Charles W. Prince, Candece Gladson und Pi-Ling Chang. „OSTEOPONTIN ENHANCES PROTO-ONCOGENE (Junb) EXPRESSION IN PRENEOPLASTIC MOUSE CELLS“. In 3rd International Conference on Osteopontin and SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein) Proteins, 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.253.
Der volle Inhalt der QuelleDachineni, Rakesh, Goqiang Ai und Jayarama B. Gunaje. „Abstract 3501: Aspirin modulates oncogene expression in hct 116 colon cancer cells“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3501.
Der volle Inhalt der QuelleGe, Lin, Lin Ge, Wenxia Meng, Hongmei Zhou und Neil Bhowmick. „Abstract 1015: Head and neck cancer expression of YAP65: A novel oncogene“. In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1015.
Der volle Inhalt der QuelleKoch, Daniel, Stacey Adams, Andrew Gentles, Benedict Anchang, Delaney Sullivan, Sylvia Plevritis und Dean Felsher. „Abstract A48: Gene expression signatures associated with MYC oncogene addiction in lymphoma“. In Abstracts: AACR Special Conference on Myc: From Biology to Therapy; January 7-10, 2015; La Jolla, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3125.myc15-a48.
Der volle Inhalt der QuelleWormser, L., A. Gaza, V. Fritz, C. Hellerbrand, AK Bosserhoff und P. Dietrich. „Expression and function of neuroblastoma RAS viral oncogene homolog (NRAS) in hepatocellular carcinoma“. In 35. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0038-1677241.
Der volle Inhalt der QuelleGuerrero, Sergi, Rudolf Fehrmann und Marcel ATM van Vugt. „Abstract 1406: Towards an RNA expression-based signature for oncogene-induced replication stress“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1406.
Der volle Inhalt der QuelleOev, M. S., E. M. Shpadaruk und R. M. Smolyakova. „PROGNOSTIC SIGNIFICANCE OF DETERMINING THE LEVEL OF EXPRESSION OF ERCC1, TS, TP IN COLORECTAL CANCER“. In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-41-45.
Der volle Inhalt der QuelleBenitez, Jorge A., Webster K. Cavenee und Frank F. Furnari. „Abstract 5253: PTEN represses oncogene expression by regulating Daxx-H3.3 deposition in the chromatin“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5253.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Modulation of oncogene expression"
Anderson, A., und G. E. Woloschak. Cellular oncogene expression following exposure of mice to {gamma}-rays. Office of Scientific and Technical Information (OSTI), Juni 1991. http://dx.doi.org/10.2172/10148918.
Der volle Inhalt der QuellePrusky, Dov, und Jeffrey Rollins. Modulation of pathogenicity of postharvest pathogens by environmental pH. United States Department of Agriculture, Dezember 2006. http://dx.doi.org/10.32747/2006.7587237.bard.
Der volle Inhalt der QuelleMcGuffie, Eileen M., und Carlo V. Catapano. Development of Triplex-Forming Oligonucleotides to Inhibit Expression of the c-myc Oncogene in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada416148.
Der volle Inhalt der QuelleRedmond, Sarah Beth, Rachel Tell, Derrick Coble, Carrie Mueller, Dušan Palić, Claire B. Andreasen und Susan J. Lamont. Genetic Differences in Chicken Splenic Immune Gene Expression in Response to Dietary Immune Modulation. Ames (Iowa): Iowa State University, Januar 2010. http://dx.doi.org/10.31274/ans_air-180814-166.
Der volle Inhalt der QuelleDickson, Robert B. Modulation of Cyclin Expression by C-MYC in Malignant and Nonmalignant Mammary Epithelial Cells. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada302398.
Der volle Inhalt der QuelleImbalzano, Anthony N. In Vivo and In Vitro Analysis of the Regulation of c-myc Proto-Oncogene Expression in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1995. http://dx.doi.org/10.21236/ada305616.
Der volle Inhalt der QuelleWoloschak, G. E., und Chin-Mei Chang-Liu. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or {gamma}-rays. Office of Scientific and Technical Information (OSTI), Mai 1994. http://dx.doi.org/10.2172/10148904.
Der volle Inhalt der QuelleWoloschak, G. E., und Chin-Mei Chang-Liu. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or {gamma}-rays. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10171321.
Der volle Inhalt der QuelleBroadley, Caroline, Debra A. Gonzalez, Rhada Nair und Jeffrey M. Davidson. Canine Vocal Fold Fibroblasts in Culture: Expression of alpha-Smooth Muscle Actin and Modulation of Elastin Synthesis. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada302739.
Der volle Inhalt der QuelleLocy, Robert D., Hillel Fromm, Joe H. Cherry und Narendra K. Singh. Regulation of Arabidopsis Glutamate Decarboxylase in Response to Heat Stress: Modulation of Enzyme Activity and Gene Expression. United States Department of Agriculture, Januar 2001. http://dx.doi.org/10.32747/2001.7575288.bard.
Der volle Inhalt der Quelle