Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Modification of the hyaluronic acid“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Modification of the hyaluronic acid" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Modification of the hyaluronic acid"
Lapčík, L., K. Benešová, L. Lapčík, S. De Smedt und B. Lapčíková. „Chemical Modification of Hyaluronic Acid: Alkylation“. International Journal of Polymer Analysis and Characterization 15, Nr. 8 (23.11.2010): 486–96. http://dx.doi.org/10.1080/1023666x.2010.520904.
Der volle Inhalt der QuellePonedel?kina, I. Yu, V. N. Odinokov, E. S. Vakhrusheva, M. T. Golikova, L. M. Khalilov und U. M. Dzhemilev. „Modification of hyaluronic acid with aromatic amino acids“. Russian Journal of Bioorganic Chemistry 31, Nr. 1 (Januar 2005): 82–86. http://dx.doi.org/10.1007/s11171-005-0011-y.
Der volle Inhalt der QuelleKuo, Jing Wen, David A. Swann und Glenn D. Prestwich. „Chemical modification of hyaluronic acid by carbodiimides“. Bioconjugate Chemistry 2, Nr. 4 (Juli 1991): 232–41. http://dx.doi.org/10.1021/bc00010a007.
Der volle Inhalt der QuelleZhang, Xin, Pengcheng Sun, Lingzi Huangshan, Bi-Huang Hu und Phillip B. Messersmith. „Improved method for synthesis of cysteine modified hyaluronic acid for in situ hydrogel formation“. Chemical Communications 51, Nr. 47 (2015): 9662–65. http://dx.doi.org/10.1039/c5cc02367j.
Der volle Inhalt der QuelleBaker, Anna. „The evidence behind the biophysical properties of hyaluronic acid dermal fillers“. Journal of Aesthetic Nursing 10, Sup1 (01.02.2021): 39–42. http://dx.doi.org/10.12968/joan.2021.10.sup1.39.
Der volle Inhalt der QuelleLaffleur, Flavia, Julia Röggla, Muneeb Ahmad Idrees und Julia Griessinger. „Chemical Modification of Hyaluronic Acid for Intraoral Application“. Journal of Pharmaceutical Sciences 103, Nr. 8 (August 2014): 2414–23. http://dx.doi.org/10.1002/jps.24060.
Der volle Inhalt der QuelleRoberts, C. R., P. J. Roughley und J. S. Mort. „Degradation of human proteoglycan aggregate induced by hydrogen peroxide. Protein fragmentation, amino acid modification and hyaluronic acid cleavage“. Biochemical Journal 259, Nr. 3 (01.05.1989): 805–11. http://dx.doi.org/10.1042/bj2590805.
Der volle Inhalt der QuelleSantaella-Sosa, Erick. „Hyaluronic acid filler vascular complication management: an updated and easy-to-follow emergency protocol“. Journal of Aesthetic Nursing 10, Sup1 (01.02.2021): 34–38. http://dx.doi.org/10.12968/joan.2021.10.sup1.34.
Der volle Inhalt der QuelleLin, Quan Kui, Xiao Jie Huang, Jun Mei Tang und Hao Chen. „Facile and Efficient Anti-Fouling Surface Construction on Poly(dimethylsiloxane) via Mussel-Inspired Chemistry“. Advanced Materials Research 749 (August 2013): 344–49. http://dx.doi.org/10.4028/www.scientific.net/amr.749.344.
Der volle Inhalt der QuelleKim, Jongho, Chaemyeong Lee und Ji Hyun Ryu. „Adhesive Catechol-Conjugated Hyaluronic Acid for Biomedical Applications: A Mini Review“. Applied Sciences 11, Nr. 1 (22.12.2020): 21. http://dx.doi.org/10.3390/app11010021.
Der volle Inhalt der QuelleDissertationen zum Thema "Modification of the hyaluronic acid"
Courtney, Margaret Ellen Louise. „Characterisation and modification of prokaryotic hyaluronic acid“. Thesis, University of Strathclyde, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249767.
Der volle Inhalt der QuelleSchanté, Carole. „Chemical modifications of hyaluronic acid for the development of bioresorbable medical devices“. Strasbourg, 2011. http://www.theses.fr/2011STRA6198.
Der volle Inhalt der QuelleThe aim of this work was to develop a novel hyaluronic acid (HA) product having a longer therapeutic action compared to the products currently on the market. An efficient chemical modification consisting of grafting amino acids onto the carboxylic groups of HA showed to yield derivatives significantly more resistant to in vitro enzymatic digestion than the native HA. Three amidation reactions were evaluated for an efficient grafting of the amino acid onto the carboxylic groups of HA. The next step was to form crosslinked hydrogels from the HA-amino acid derivatives and was achieved by using the crosslinking agent butanediol diglycidyl ether (BDDE) in acidic media. The resulting crosslinked HA-amino acid hydrogels exhibited a higher in vitro resistance to hyaluronidase degradation compared to the hydrogels obtained from native HA in the same conditions, and compared to commercially available hyaluronic acid products
Hrochová, Eliška. „Derivatizace hyaluronanu sodného jakožto nástroj pro zvýšení stability modelové artificiální synoviální kapaliny“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444537.
Der volle Inhalt der QuelleOdehnalová, Nikola. „Příprava nanočástic a jejich využití jako kontrastních látek pro in vivo zobrazování“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2020. http://www.nusl.cz/ntk/nusl-414183.
Der volle Inhalt der QuelleYoung, Denice Shanette. „Hyaluronic Acid-based Nanofibers via Electrospinning“. NCSU, 2006. http://www.lib.ncsu.edu/theses/available/etd-08162006-095122/.
Der volle Inhalt der QuelleSjögren, Frida. „Microstructuring of Hyaluronic acid cell culture scaffolds“. Licentiate thesis, Uppsala universitet, Mikrosystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-334653.
Der volle Inhalt der QuelleRen, Cindy D. „Injectable hyaluronic acid scaffolds for cartilage tissue engineering“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46025.
Der volle Inhalt der QuelleIncludes bibliographical references.
Every year tens of millions worldwide suffer from cartilage damage, caused by mechanical degradation, trauma or disease. Because of the lack of blood supply and low cell concentration within the tissue, cartilage has very limited regenerative ability. Although current treatments can provide symptomatic relief, the results vary greatly among individuals, and newly formed tissue often does not duplicate the structure, composition or mechanical properties of normal cartilage. Therefore, in recent years, tissue engineering has emerged as an alternative therapy. Tissue engineering enhances the body's natural healing capacity by providing cells, signaling molecules, and an environment in the form of a scaffold that is conducive to tissue growth. This project has focused on the development of a tissue engineering scaffold for cartilage regeneration. Disadvantages to current scaffolds include the fact that they require surgery for implantation, and that they are difficult to mold to the exact shape of the defect site. Hence, the motivation of this thesis is to develop an injectable scaffold that can be administered in a minimally invasive manner, and that allows for scaffold formation in situ, naturally shaping the construct into the shape of the defect, and thus promoting integration and stability To this end, we have developed a thermoresponsive injectable scaffold for cartilage tissue engineering. The scaffold was injected as a liquid at room temperature, and gelled at the target site in response to the change to body temperature, resulting in a biocompatible, bioresorbable substrate for tissue growth. Our approach involved suspending thermoresponsive liposomes, which encapsulated a crosslinking agent, in a polymer solution. At room temperature, the crosslinking agent was separated from the polymer by the lipid membrane, hence the precursor solution remained a liquid and injectable. Upon injection and exposure to body temperature, the lipids experienced a phase transition, which significantly increased the membrane permeability and led to the release of the crosslinking agent and reaction with the polymer, forming a networked scaffold.
(cont.) The scaffold system that we have chosen is a hyaluronic acid-tyramine system (HA-Tyr) that crosslinked in the presence of H202 and horseradish peroxidase (HRP) to form a hydrogel. Since HA, Tyr, H202 and peroxidases all occur naturally in the body, scaffold formation could take place with minimal toxicity and in the presence of cells as well as in situ. In order to impart temperature sensitivity to this system, HRP was encapsulated within liposomes, and it was shown that HRP was successfully retained at 25°C and released at 37°C. Upon liposome addition to the HA-Tyr/H202 solution, the precursor solution remained a liquid for hours at 25°C, yet gelation could be induced within minutes when exposed to 37°C. Furthermore, it was shown that gelation times could be adjusted to meet various clinical needs by modulating HRP encapsulation, liposome concentration and HA-Tyr concentration. In order to test the potential of the HA-Tyr system for cartilage production, porcine chondrocytes were encapsulated within HA-Tyr/H202/HRP hydrogels and implanted subcutaneously in mice. Harvested constructs were shown to achieve a GAG content of 1.2 wt% and demonstrated 40% of the collagen content of normal articular cartilage. Matrix production was found to be influenced by the initial cell density, scaffold degradation rate and Type II collagen concentration. The means of HRP delivery, whether by simple addition or through thermoreponsive liposomes, was not shown to have an effect on matrix production. Injected scaffolds were shown to achieve GAG and collagen levels similar to that of implanted scaffolds. As signaling molecules have been demonstrated to be potent chondrogenic inducers, PLGA-hydroxyapatite nanocomposite microparticles were utilized for the controlled delivery of TGF-[beta]1 and IGF-1. The rate of growth factor release was modulated by the molecular weight of PLGA within the microparticles; increasing molecular weight led to decreasing release rate. The nanocomposite microparticles were encapsulated within HA-Tyr/H202/HRP/chondrocyte constructs, which were then implanted subcutaneously in mice.
(cont.) Growth factor-induced enhancement of GAG and collagen production was found to be determined by the release rates of TGF-31 and IGF-1, multifactor release, and the dosage of nanocomposite microparticles. Injection of the microparticles with an HA-Tyr/H202/HRP liposome/chondrocyte/collagen solution also showed that the microparticles did not interfere with in situ scaffold formation, and could induce significant improvements to GAG and collagen production in the injectable system.
by Cindy D. Ren.
Ph.D.
Almalik, Abdulaziz. „Hyaluronic acid-coated nanoparticles as biofunctional pharmaceutical carriers“. Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/hyaluronic-acidcoated-nanoparticles-as-biofunctional-pharmaceutical-carriers(6812b8ca-0341-4473-abbe-b5059d30f8bc).html.
Der volle Inhalt der QuelleOuasti, Sihem. „Hyaluronic acid biomaterials for perspective peripheral nerve regeneration“. Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/hyaluronic-acid-biomaterials-for-perspective-peripheral-nerve-regeneration(ec50c37c-7c3e-4e54-8b97-19cec79bcb17).html.
Der volle Inhalt der QuelleMcLaughlin, Richard L. „Hyaluronic acid production in continuous cultures of Streptococcus zooepidemicus /“. [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19192.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Modification of the hyaluronic acid"
Selyanin, Mikhail A., Petr Ya Boykov, Vladimir N. Khabarov und Felix Polyak. Hyaluronic Acid. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118695920.
Der volle Inhalt der QuelleHyaluronan: From basic science to clinical applications. Edgewater, New Jersey: PubMatrix, 2011.
Den vollen Inhalt der Quelle findenPractical aspects of hyaluronan based medical products. Boca Raton: Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenYa, Boykov P., und Selyanin, M. A. (Michael A.), Hrsg. Hyaluronic acid: Preparation, properties, application in biology and medicine. Chichester, West Sussex: John Wiley & Sons, Inc., 2015.
Den vollen Inhalt der Quelle findenMyint, Pe. Free radical reactions of hyaluronic acid in aqueous solution. Salford: University of Salford, 1991.
Den vollen Inhalt der Quelle findenBo li suan yan jiu yu ying yong: Hyaluronan. Beijing Shi: Ren min wei sheng chu ban she, 2010.
Den vollen Inhalt der Quelle findenPeixue, Ling, Rong Xiaohua und Zhang Tianmin, Hrsg. Xiu wai hui zhong: Shen qi de zhi neng tou ming zhi suan. Beijing Shi: Zhongguo fang zhi chu ban she, 2005.
Den vollen Inhalt der Quelle findenStarnes, Hazel Louise. The role of copper in the free radical depolymerisation of hyaluronic acid. Salford: University of Salford, 1995.
Den vollen Inhalt der Quelle findenLapakko, Kim A. Modification of the net acid production (NAP) test. S.l: s.n, 1993.
Den vollen Inhalt der Quelle findenSonia, Weiss, und Copyright Paperback Collection (Library of Congress), Hrsg. Restylane. New York: Berkley Books, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Modification of the hyaluronic acid"
Bebe, Siziwe, und Tassos Anastassiades. „Chemical Modification of the N-Acetyl Moieties of Hyaluronic Acid from Streptococcus equi for Studies in Cytokine Production“. In Methods in Molecular Biology, 99–113. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9154-9_9.
Der volle Inhalt der QuelleSwann, David A., und Jing-wen Kuo. „Hyaluronic acid“. In Biomaterials, 285–305. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-11167-1_6.
Der volle Inhalt der QuelleBährle-Rapp, Marina. „Hyaluronic Acid“. In Springer Lexikon Kosmetik und Körperpflege, 262. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_4838.
Der volle Inhalt der QuelleOhmae, Masashi, und Shunsaku Kimura. „Hyaluronic Acid“. In Encyclopedia of Polymeric Nanomaterials, 944–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_413.
Der volle Inhalt der QuelleOhmae, Masashi, und Shunsaku Kimura. „Hyaluronic Acid“. In Encyclopedia of Polymeric Nanomaterials, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_413-1.
Der volle Inhalt der QuelleAllegra, Luigi, Sabrina Della Patrona und Giuseppe Petrigni. „Hyaluronic Acid“. In Heparin - A Century of Progress, 385–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23056-1_17.
Der volle Inhalt der QuellePereira, Hélder, Duarte Andre Sousa, António Cunha, Renato Andrade, J. Espregueira-Mendes, J. Miguel Oliveira und Rui L. Reis. „Hyaluronic Acid“. In Osteochondral Tissue Engineering, 137–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76735-2_6.
Der volle Inhalt der QuelleShah, Chirag B., und Stanley M. Barnett. „Hyaluronic Acid Gels“. In Polyelectrolyte Gels, 116–30. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch007.
Der volle Inhalt der QuelleNestor, Mark S., Emily L. Kollmann und Nicole Swenson. „Hyaluronic Acid Fillers“. In Cosmetic Dermatology, 375–79. Oxford, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118655566.ch41.
Der volle Inhalt der QuelleHildebrand, Hartmut F., und Nicolas Blanchemain. „Collagen and Hyaluronic Acid“. In Cartilage Surgery and Future Perspectives, 87–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-19008-7_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Modification of the hyaluronic acid"
Klicova, Marketa, Lukas Volesky, Andrea Klapstova, Vaclav Liska Jachym Rosendorf, Richard Palek und Jana Horakova. „Hydrophobic Ultrafine Hyaluronic Acid Nanofibers“. In The 5th World Congress on New Technologies. Avestia Publishing, 2019. http://dx.doi.org/10.11159/icnfa19.151.
Der volle Inhalt der QuelleChulho Shin, Sumi Kim, Seongyeon Jo und Insup Noh. „Biological characterizations of hyaluronic acid hydrogel particles“. In 2011 IEEE Nanotechnology Materials and Devices Conference (NMDC 2011). IEEE, 2011. http://dx.doi.org/10.1109/nmdc.2011.6155292.
Der volle Inhalt der QuelleZheng, Shaohui, Sunghoon Cho, Van Du Nguyen, Eunpyo Choi, Jiwon Han und Jong-Oh Park. „Development of hyaluronic acid microcargo for therapeutic bacteriobots“. In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE, 2017. http://dx.doi.org/10.1109/marss.2017.8001912.
Der volle Inhalt der QuelleBick, A., E. Gomez, H. Shin, M. Brigham, M. Vu und A. Khademhosseini. „Fabrication of microchannels in methacrylated hyaluronic acid hydrogels“. In 2009 IEEE 35th Annual Northeast Bioengineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/nebc.2009.4967833.
Der volle Inhalt der QuelleRudolph, J., A. Dietz, P. Meier, S. Grunewald und S. Wiegand. „Severe embolism after injection rhinoplasty with hyaluronic acid“. In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686642.
Der volle Inhalt der QuelleEl-Fakhri, S., V. Holcman und K. Liedermann. „Dielectric spectroscopy of hyaluronic acid and its salts“. In 2008 International Symposium on Electrical Insulating Materials (ISEIM). IEEE, 2008. http://dx.doi.org/10.1109/iseim.2008.4664539.
Der volle Inhalt der QuelleKalkandelen, Cevriye, Sena Su, Elif Saatcioglu und Oguzhan Gunduz. „Hyaluronic Acid Production and Analysis from Rooster Comb“. In 2020 Medical Technologies Congress (TIPTEKNO). IEEE, 2020. http://dx.doi.org/10.1109/tiptekno50054.2020.9299240.
Der volle Inhalt der QuellePapakonstantinou, Eleni, Leticia Grize, Hans Hirsch, Michael Tamm und Daiana Stolz. „Hyaluronic acid in COPD exacerbations of different etiology“. In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.967.
Der volle Inhalt der QuelleKim, Jungju, In Sook Kim, Soon Jung Hwang, Ho Chul Kim, Yongdoo Park und Kyung Sun. „Bone regeneration using MMP sensitive-hyaluronic acid based hydrogels“. In 2009 IEEE 35th Annual Northeast Bioengineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/nebc.2009.4967789.
Der volle Inhalt der Quelle„Effect of hyaluronic acid on friction of articular cartilage“. In Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-709.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Modification of the hyaluronic acid"
Padalecki, Susan S. Hyaluronic Acid as a Target for Intervention in Prostate Cancer Metastases. Fort Belvoir, VA: Defense Technical Information Center, Juni 2012. http://dx.doi.org/10.21236/ada567469.
Der volle Inhalt der QuellePrestwich, Glenn D. Targeted Chemotherapy of Tumors and Metastases With Hyaluronic Acid-Anti-Tumor Bioconjugates. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada398191.
Der volle Inhalt der QuellePrestwich, Glenn D. Targeted Chemotherapy of Tumors and Metastases With Hyaluronic Acid-Anti-Tumor Bioconjugates. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada383364.
Der volle Inhalt der QuelleGooz, Pal. Hyaluronic Acid is Overexpressed in Fibrotic Lung Tissue and Promotes Collagen Expression. Fort Belvoir, VA: Defense Technical Information Center, April 2009. http://dx.doi.org/10.21236/ada504117.
Der volle Inhalt der QuelleGooz, Pal. Hyaluronic Acid is Overexpressed in Fibrotic Lung Tissue and Promotes Collagen Expression. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada483207.
Der volle Inhalt der QuelleZhou, Xing, Ke-meng Xiang und Xiang-yao Yuan. A comparison of the effects of Acupoint injection combined with Hyaluronic Acid versus isolated Hyaluronic Acid for knee osteoarthritis:Protocol for systematic review and meta-analysis of randomized controlled trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Oktober 2020. http://dx.doi.org/10.37766/inplasy2020.10.0058.
Der volle Inhalt der QuelleLokeshwar, Vinata B. Hyaluronic Acid and Hyaluronidase in Prostate Cancer: Evaluation of Their Therapeutic and Prognostic Potential. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada434622.
Der volle Inhalt der QuelleMladenova, Ralitsa, Ognian Sabotinov, Yordanka Karakirova, Maya Shopska und Magdalina Gyurova. Preliminary Study on Lasers and X-Ray Irradiation Effects on Hyaluronic Acid Dermal Fillers. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, November 2018. http://dx.doi.org/10.7546/crabs.2018.11.02.
Der volle Inhalt der QuelleLokeshwar, Vinata B. Hyaluronic Acid and Hyaluronidase in Prostate Cancer: Evaluation of Their Therapeutic and Prognostic Potential. Fort Belvoir, VA: Defense Technical Information Center, Januar 2004. http://dx.doi.org/10.21236/ada422975.
Der volle Inhalt der QuelleMitchell, J. D., R. Lee, G. T. Hodakowski, K. Neya und W. Harringer. Prevention of Postoperative Pericardial Adhesions with a Hyaluronic Acid Coating Solution: Experimental Safety and Efficacy Studies. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada360178.
Der volle Inhalt der Quelle