Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Models of generalized estimating equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Models of generalized estimating equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Models of generalized estimating equations"
Vens, M., und A. Ziegler. „Generalized Estimating Equations“. Methods of Information in Medicine 49, Nr. 05 (2010): 421–25. http://dx.doi.org/10.3414/me10-01-0026.
Der volle Inhalt der QuelleFeddag, Mohand-Larbi, Ion Grama und Mounir Mesbah. „Generalized Estimating Equations (GEE) for Mixed Logistic Models“. Communications in Statistics - Theory and Methods 32, Nr. 4 (04.01.2003): 851–74. http://dx.doi.org/10.1081/sta-120018833.
Der volle Inhalt der QuelleLo, Chi Ho, Wing Kam Fung und Zhong Yi Zhu. „Structural Parameter Estimation Using Generalized Estimating Equations for Regression Credibility Models“. ASTIN Bulletin 37, Nr. 02 (November 2007): 323–43. http://dx.doi.org/10.2143/ast.37.2.2024070.
Der volle Inhalt der QuelleLo, Chi Ho, Wing Kam Fung und Zhong Yi Zhu. „Structural Parameter Estimation Using Generalized Estimating Equations for Regression Credibility Models“. ASTIN Bulletin 37, Nr. 2 (November 2007): 323–43. http://dx.doi.org/10.1017/s0515036100014896.
Der volle Inhalt der QuelleBreitung, J., N. R. Chaganty, R. M. Daniel, M. G. Kenward, M. Lechner, P. Martus, R. T. Sabo, Y. G. Wang und C. Zorn. „Discussion of “Generalized Estimating Equations: Notes on the Choice of the Working Correlation Matrix”“. Methods of Information in Medicine 49, Nr. 05 (2010): 426–32. http://dx.doi.org/10.1055/s-0038-1625133.
Der volle Inhalt der QuelleZubair, Seema, und Sanjoy K. Sinha. „Marginal models for longitudinal count data with dropouts“. Journal of Statistical Research 54, Nr. 1 (25.08.2020): 27–42. http://dx.doi.org/10.47302/jsr.2020540102.
Der volle Inhalt der QuelleMa, Yanyuan, und Marc G. Genton. „Explicit estimating equations for semiparametric generalized linear latent variable models“. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72, Nr. 4 (05.07.2010): 475–95. http://dx.doi.org/10.1111/j.1467-9868.2010.00741.x.
Der volle Inhalt der QuelleCorrente, JosÉ Eduardo, und Maria Del Pilar DÍAz. „Ordinal models and generalized estimating equations to evaluate disease severity“. Journal of Applied Statistics 30, Nr. 4 (Mai 2003): 425–39. http://dx.doi.org/10.1080/0266476032000035458.
Der volle Inhalt der QuelleKoper, Nicola, und Micheline Manseau. „Generalized estimating equations and generalized linear mixed-effects models for modelling resource selection“. Journal of Applied Ecology 46, Nr. 3 (Juni 2009): 590–99. http://dx.doi.org/10.1111/j.1365-2664.2009.01642.x.
Der volle Inhalt der QuelleNikita, Efthymia. „The use of generalized linear models and generalized estimating equations in bioarchaeological studies“. American Journal of Physical Anthropology 153, Nr. 3 (13.12.2013): 473–83. http://dx.doi.org/10.1002/ajpa.22448.
Der volle Inhalt der QuelleDissertationen zum Thema "Models of generalized estimating equations"
Alnaji, Lulah A. „Generalized Estimating Equations for Mixed Models“. Bowling Green State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1530292694012892.
Der volle Inhalt der QuelleHuang, Danwei. „Robustness of generalized estimating equations in credibility models“. Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38842312.
Der volle Inhalt der QuelleHuang, Danwei, und 黃丹薇. „Robustness of generalized estimating equations in credibility models“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38842312.
Der volle Inhalt der QuelleCai, Jianwen. „Generalized estimating equations for censored multivariate failure time data /“. Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/9581.
Der volle Inhalt der QuelleJang, Mi Jin. „Working correlation selection in generalized estimating equations“. Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/2719.
Der volle Inhalt der QuelleClark, Seth K. „Model Robust Regression Based on Generalized Estimating Equations“. Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/26588.
Der volle Inhalt der QuellePh. D.
Akanda, Md Abdus Salam. „A generalized estimating equations approach to capture-recapture closed population models: methods“. Doctoral thesis, Universidade de Évora, 2014. http://hdl.handle.net/10174/18297.
Der volle Inhalt der QuelleCao, Jiguo. „Generalized profiling method and the applications to adaptive penalized smoothing, generalized semiparametric additive models and estimating differential equations“. Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102483.
Der volle Inhalt der QuelleFirst, penalized smoothing is extended by allowing for a functional smoothing parameter, which is adaptive to the geometry of the underlying curve, which is called adaptive penalized smoothing. In the first level of optimization, the smooth ing coefficients are local parameters, estimated by minimizing sum of squared errors, conditional on the functional smoothing parameter. In the second level, the functional smoothing parameter is a complexity parameter, estimated by minimizing generalized cross-validation (GCV), treating the smoothing coefficients as explicit functions of the functional smoothing parameter. Adaptive penalized smoothing is shown to obtain better estimates for fitting functions and their derivatives.
Next, the generalized semiparametric additive models are estimated by three levels of optimization, allowing response variables in any kind of distribution. In the first level, the nonparametric functional parameters are nuisance parameters, estimated by maximizing the regularized likelihood function, conditional on the linear coefficients and the smoothing parameter. In the second level, the linear coefficients are structural parameters, estimated by maximizing the likelihood function with the nonparametric functional parameters treated as implicit functions of linear coefficients and the smoothing parameter. In the third level, the smoothing parameter is a complexity parameter, estimated by minimizing the approximated GCV with the linear coefficients treated as implicit functions of the smoothing parameter. This method is applied to estimate the generalized semiparametric additive model for the effect of air pollution on the public health.
Finally, parameters in differential equations (DE's) are estimated from noisy data with the generalized profiling method. In the first level of optimization, fitting functions are estimated to approximate DE solutions by penalized smoothing with the penalty term defined by DE's, fixing values of DE parameters. In the second level of optimization, DE parameters are estimated by weighted sum of squared errors, with the smoothing coefficients treated as an implicit function of DE parameters. The effects of the smoothing parameter on DE parameter estimates are explored and the optimization criteria for smoothing parameter selection are discussed. The method is applied to fit the predator-prey dynamic model to biological data, to estimate DE parameters in the HIV dynamic model from clinical trials, and to explore dynamic models for thermal decomposition of alpha-Pinene.
Liu, Fangda, und 刘芳达. „Two results in financial mathematics and bio-statistics“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46976437.
Der volle Inhalt der QuelleZheng, Xueying, und 郑雪莹. „Robust joint mean-covariance model selection and time-varying correlation structure estimation for dependent data“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50899703.
Der volle Inhalt der Quellepublished_or_final_version
Statistics and Actuarial Science
Doctoral
Doctor of Philosophy
Bücher zum Thema "Models of generalized estimating equations"
Gregory, Allan W. Estimating equations with combined moving average error processes under rational expectations. London, Canada: Dept. of Economics, University of Western Ontario, 1985.
Den vollen Inhalt der Quelle findenauthor, Ieno Elena N., Hrsg. Beginner's guide to zero-inflated models with R. Newburgh, United Kingdom: Highland Statistics Ltd., 2016.
Den vollen Inhalt der Quelle findenZiegler, Andreas. Generalized Estimating Equations. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0499-6.
Der volle Inhalt der QuelleJoseph, Hilbe, Hrsg. Generalized estimating equations. Boca Raton, FL: Chapman & Hall/CRC, 2003.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Generalized Estimating Equations. New York, NY: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle finden1944-, Hilbe Joseph M., Hrsg. Quasi-least squares regression. Boca Raton: CRC Press, Taylor & Francis Group, 2014.
Den vollen Inhalt der Quelle findenJinfang, Wang, Hrsg. Numerical methods for nonlinear estimating equations. Oxford: Clarendon Press, 2003.
Den vollen Inhalt der Quelle findenBayoumi, Tamim A. Estimating trade equations from aggregate bilateral data. [Washington, D.C.]: International Monetary Fund, Asia and Pacific Department, 1999.
Den vollen Inhalt der Quelle findenPseudo Maximum Likelihood Methode und Generalised Estimating Equations zur Analyse korrelierter Daten. Frankfurt am Main: P. Lang, 1999.
Den vollen Inhalt der Quelle findenKnafl, George J. Modeling Correlated Outcomes Using Extensions of Generalized Estimating Equations and Linear Mixed Modeling. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-41988-1.
Der volle Inhalt der QuelleBuchteile zum Thema "Models of generalized estimating equations"
Ziegler, Andreas. „Generalized linear models“. In Generalized Estimating Equations, 21–28. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0499-6_3.
Der volle Inhalt der QuelleBravo, Francesco. „Semiparametric Generalized Estimating Equations in Misspecified Models“. In Springer Proceedings in Mathematics & Statistics, 43–52. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0569-0_5.
Der volle Inhalt der QuellePark, Hyoshin, und Nigel Pugh. „Generalized Estimating Equations Model Based Recursive Partitioning: Applied to Distracted Driving“. In Advances in Intelligent Systems and Computing, 833–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93885-1_77.
Der volle Inhalt der QuelleZiegler, Andreas, und Maren Vens. „Generalized Estimating Equations“. In Handbook of Epidemiology, 1337–76. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-0-387-09834-0_45.
Der volle Inhalt der QuelleMolenberghs, Geert, Geert Verbeke und Michael G. Kenward. „Generalized Estimating Equations“. In Handbook of Epidemiology, 1–23. New York, NY: Springer New York, 2023. http://dx.doi.org/10.1007/978-1-4614-6625-3_45-1.
Der volle Inhalt der QuelleZiegler, Andreas. „The linear exponential family“. In Generalized Estimating Equations, 1–10. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0499-6_1.
Der volle Inhalt der QuelleZiegler, Andreas. „The quadratic exponential family“. In Generalized Estimating Equations, 11–20. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0499-6_2.
Der volle Inhalt der QuelleZiegler, Andreas. „Maximum likelihood method“. In Generalized Estimating Equations, 29–49. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0499-6_4.
Der volle Inhalt der QuelleZiegler, Andreas. „Pseudo maximum likelihood method based on the linear exponential family“. In Generalized Estimating Equations, 51–77. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0499-6_5.
Der volle Inhalt der QuelleZiegler, Andreas. „Quasi generalized pseudo maximum likelihood method based on the linear exponential family“. In Generalized Estimating Equations, 79–99. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0499-6_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Models of generalized estimating equations"
Lin, Xinfan, Anna Stefanopoulou, Patricia Laskowsky, Jim Freudenberg, Yonghua Li und R. Dyche Anderson. „State of Charge Estimation Error due to Parameter Mismatch in a Generalized Explicit Lithium Ion Battery Model“. In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6193.
Der volle Inhalt der QuelleYang, Qingcai, Yunpeng Cao, Fang Yu, Jianwei Du und Shuying Li. „Health Estimation of Gas Turbine: A Symbolic Linearization Model Approach“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64071.
Der volle Inhalt der QuelleMcCain, B. A., und A. G. Stefanopoulou. „Order Reduction for a Control-Oriented Model of the Water Dynamics in Fuel Cells“. In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97075.
Der volle Inhalt der QuelleLi, Chen, und Liu Yanzhu. „The Robust Adaptive Control of Free-Floating Space Manipulator Systems“. In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21534.
Der volle Inhalt der QuelleGavrea, B., D. Negrut und F. A. Potra. „The Newmark Integration Method for Simulation of Multibody Systems: Analytical Considerations“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81770.
Der volle Inhalt der QuelleMilliet de Faverges, Marie, Giorgio Russolillo, Christophe Picouleau, Boubekeur Merabet und Bertrand Houzel. „Estimating Long-Term Delay Risk with Generalized Linear Models“. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018. http://dx.doi.org/10.1109/itsc.2018.8569507.
Der volle Inhalt der QuelleD'Angelo, G. M., N. A. Lazar, W. F. Eddy, J. C. Morris und Y. I. Sheline. „A generalized estimating equations approach for resting-state functional MRI group analysis“. In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091254.
Der volle Inhalt der QuelleBeghi, A., und D. D'Alessandro. „Some remarks on FSN models and generalized Riccati equations“. In 1997 European Control Conference (ECC). IEEE, 1997. http://dx.doi.org/10.23919/ecc.1997.7082502.
Der volle Inhalt der QuelleZha, Li-teng, Zhi-bin Li, Xiang Zhang und Liu-yi Gao. „Using Generalized Estimating Equation Model to Analyze Crash Frequency on Freeways in China“. In 11th International Conference of Chinese Transportation Professionals (ICCTP). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41186(421)228.
Der volle Inhalt der QuelleKaram, Nada S., und Ahmed H. Khaleel. „Generalized inverse Rayleigh reliability estimation for the (2+1) cascade model“. In XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5116973.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Models of generalized estimating equations"
Over, Thomas, Riki Saito, Andrea Veilleux, Padraic O’Shea, Jennifer Sharpe, David Soong und Audrey Ishii. Estimation of Peak Discharge Quantiles for Selected Annual Exceedance Probabilities in Northeastern Illinois. Illinois Center for Transportation, Juni 2016. http://dx.doi.org/10.36501/0197-9191/16-014.
Der volle Inhalt der QuelleLubowa, Nasser, Zita Ekeocha, Stephen Robert Byrn und Kari L. Clase. Pharmaceutical Industry in Uganda: A Review of the Common GMP Non-conformances during Regulatory Inspections. Purdue University, Dezember 2021. http://dx.doi.org/10.5703/1288284317442.
Der volle Inhalt der QuelleCerulli, Giovanni. Estimating Dose-Response Functions in Stata. Instats Inc., 2023. http://dx.doi.org/10.61700/iiawi76rkf2fr469.
Der volle Inhalt der QuelleBudzich, Jeffrey. PR-685-184506-R05 Fluvial Geomorphology Equations and Mechanics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2020. http://dx.doi.org/10.55274/r0011666.
Der volle Inhalt der QuelleMathew, Sonu, Srinivas S. Pulugurtha und Sarvani Duvvuri. Modeling and Predicting Geospatial Teen Crash Frequency. Mineta Transportation Institute, Juni 2022. http://dx.doi.org/10.31979/mti.2022.2119.
Der volle Inhalt der QuelleMoreda, Fekadu, Benjamin Lord, Mauro Nalesso, Pedro Coli Valdes Daussa und Juliana Corrales. Hydro-BID: New Functionalities (Reservoir, Sediment and Groundwater Simulation Modules). Inter-American Development Bank, November 2016. http://dx.doi.org/10.18235/0009312.
Der volle Inhalt der Quelle