Dissertationen zum Thema „Modelling photovoltaics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Modelling photovoltaics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Turban, David. „Electronic structure modelling of singlet fission in organic photovoltaics“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/271889.
Der volle Inhalt der QuelleCole, Ian R. „Modelling CPV“. Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/18050.
Der volle Inhalt der QuelleWu, Xiaofeng. „Fast spatially-resolved electrical modelling and quantitative characterisation of photovoltaic devices“. Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/18018.
Der volle Inhalt der QuelleMilshyn, Vladyslav. „Modelling the Effect of Photovoltaics and Battery Storage on Electricity Demand : Implications for Tariff Structures“. Thesis, Uppsala universitet, Industriell teknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301407.
Der volle Inhalt der QuelleWidén, Joakim. „System Studies and Simulations of Distributed Photovoltaics in Sweden“. Doctoral thesis, Uppsala universitet, Fasta tillståndets fysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132907.
Der volle Inhalt der QuelleFelaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 711
Shepero, Mahmoud. „Modelling the Penetration Effect of Photovoltaics and Electric Vehicles on Electricity Demand and Its Implications on Tariff Structures“. Thesis, Uppsala universitet, Industriell teknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-295426.
Der volle Inhalt der QuelleGabr, Ahmed. „Modelling and Characterization of Down-Conversion and Down-Shifting Processes for Photovoltaic Applications“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35048.
Der volle Inhalt der Quelleau, A. carr@aip org, und Anna Judith Carr. „A Detailed Performance Comparison of PV Modules of Different Technologies and the Implications for PV System Design Methods“. Murdoch University, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20050830.94641.
Der volle Inhalt der QuellePatrick, Christopher Edward. „Photoemission spectra of nanostructured solar cell interfaces from first principles“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:fa2333ea-7016-4d6f-8d55-aee4178482a6.
Der volle Inhalt der QuelleUrquhart, Andrew J. „Accuracy of low voltage electricity distribution network modelling“. Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/21799.
Der volle Inhalt der QuelleElfving, Gustav, und Emil Jansson. „Modelling extensive solar power production in urban and rural areas“. Thesis, Uppsala universitet, Fasta tillståndets fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325004.
Der volle Inhalt der QuelleNygren, Anton, und Elin Sundström. „Modelling bifacial photovoltaic systems : Evaluating the albedo impact on bifacial PV systems based on case studies in Denver, USA and Västerås, Sweden“. Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55111.
Der volle Inhalt der QuelleBarton, John P. „A probabilistic method of modelling energy storage in electricity systems with intermittent renewable energy“. Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/9727.
Der volle Inhalt der QuelleTatsiankou, Viktar. „Instrumentation Development for Site-Specific Prediction of Spectral Effects on Concentrated Photovoltaic System Performance“. Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31222.
Der volle Inhalt der QuelleNoori, Keian. „Energy-level alignment at organic and hybrid organic-inorganic photovoltaic interfaces“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d1b2a4e9-a5d6-4843-b172-6d83dea8a6cb.
Der volle Inhalt der QuelleSahli, Mehdi. „Simulation and modelling of thermal and mechanical behaviour of silicon photovoltaic panels under nominal and real-time conditions“. Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD036.
Der volle Inhalt der QuelleThe work presented in this thesis deals with the development of a numerical multi-physics model, designed to study the optical, electrical and thermal behaviour of a photovoltaic module. The optical behaviour was evaluated using stochastic modelling based on Markov chains, whereas the electrical behaviour was drawn specifically for Silicon based photovoltaic panels using numerical optimization methods. The thermal behaviour was developed in 1D over the thickness of the module, and the multi-physics module was weakly coupled in MATLAB. The behaviour of commercial panels under nominal operation conditions was validated using data declared by the manufacturers. This model was used to perform a parametric study on the effect of solar irradiances in steady state. It was also validated for real use conditions by comparing it to experimental temperature and electrical power output. A thermomechanical study in 2D in ABAQUS/CAE based in the multi-physics model was carried out in nominal operating conditions, as well as in fatigue thermal cycling according to the IEC 61215 Standard to predict the stresses that are imposed on the panel
Manshaei, Leila. „Modelling of Photovoltaic power plantsin SIMPOW“. Thesis, KTH, Elektriska energisystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121150.
Der volle Inhalt der QuelleSchweizer, Christian. „Modelling photovoltaic systems in urban environments“. Thesis, De Montfort University, 2000. http://hdl.handle.net/2086/4822.
Der volle Inhalt der QuelleArnaud, Marc-Alexandre Dimitri. „Modélisation multi-échelle de polymères conjugués pour le photovoltaïque organique : confrontation expérience / théorie“. Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3053/document.
Der volle Inhalt der QuelleThis predictive research work, combined with an experimental study, aims at anticipate the behavior of a new donor :acceptor pair constituted by a P3HT-type of polymer and an innovative graphene-based acceptor material (HBC). This study is particularly interested in i) the absorption band of the donor (a « low band gap » polymer) and ii) its resistance towards degradation (cristallinity, oxidation stability), and finally iii) the modulation of the electronic properties of the acceptor, in keeping with those of the donor. Results show that polythiophenes grafted with an –OR group improve both conjugation, rigidity, cristallinity and photostability, in addition to their great electronic compatibility with functionalized HBCs. Besides, this new acceptor material will be fully compatible with a graphite electrode, thanks to its columnar structuration
Vadon, Mathieu. „Extraction de bore par oxydation du silicium liquide pour applications photovoltaïques“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI067/document.
Der volle Inhalt der QuelleBoron extraction from liquid silicon is a step within a new chain of processes aimed to purify silicon that meets purity requirements specific to photovoltaic applications. This thesis focuses mostly on cold gas processes that involve the injection of a mixture of Ar-H2-H2O gases onto electromagnetically stirred liquid silicon. A second similar method ("plasma processes") that involves the injection of thermal plasma made from an Ar-H2-H2O mixture has also been studied. A model is needed to minimize energy consumption by optimizing the process.We want to be able to predict the flow of silicon from the reactive surface (oxidation speed), the flow of boron from the surface (to have the purification speed) and the passivation threshold. For a given setting, the passivation threshold is the limit oxydant partial pressure at injection beyond which a passivating silica layer appears on the surface of the liquid silicon, which interrupts the purification. In order to minimize the energy consumption, and for that matter , in order to speed up the process, we want to inject oxydant in a quantity just below the passivation threshold.Previous studies have shown that the limiting factor for the oxidation and purification speed is the transport of oxidant in the gas phase. That's why we have made a 1D reactive-diffusive model at thermodynamical equilibrium of the gaseous boundary layer. According to this model the effect of the formation of silica aerosols is to divide by two the flow of oxydant towards the surface, which is useful for the simplification of CFD simulations. This effect of the formation of silica aerosols on oxidant flows can also be found without the hypothesis of thermodynamical equilibrium of silica aerosols with the gas phase, as confirmed by simulations and experiments.Regarding the estimation of the purification speed, we have selected the most realistic values of the enthalpy of formation of HBO(g) and of the activity coefficient of boron in liquid silicon.We could get good estimates of the purification speed at different temperatures and levels of oxidant concentrations at injection, by using the selected thermodynamical values and by supposing that the surface reaction products HBO(g) and SiO(g) diffuse similarly. A reason for this similar diffusion of SiO(g) and HBO(g) might be a common and simultaneous precipitation , due to specific dynamics of nucleation and growth that need to be investigated further. Those results for cold gas processed could also be obtained for a plasma experiment.However for the plasma experiment, silica aerosols can be formed only in a very thin layer near the surface and this result needs confirmation from other experiments.Temperature measurement and control for electromagnetically levitating liquid silicon under a flow of oxidant were achieved. With more time, quantitative results could be achieved to measure thermodynamical data on impurities without contaminations.Regarding the prediction of the passivation threshold, we justified a thermodynamical equilibrium at surface of SiO(g) with Si(l) and SiO2(s/l) at passivation threshold with the spreading of silica particles over the liquid silicon surface with the stirring. We show that the passivation layer is compatible with silica aerosols only if those aerosols are not in equilibrium with the gas phase. Therefore the kinetics of formation of silica aerosols should be studied further. A previous empirical formula on the prediction of the passivation threshold for experiments where H2O is the oxidant has been confirmed using our CFD model. A passivation experiment has shown the absence of impact of silica aerosols on oxidant transport when the oxidant is O2
Gow, John A. „Modelling, simulation and control of photovoltaic converter systems“. Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/6871.
Der volle Inhalt der QuelleWang, Yimin. „Modelling physical location based factors of photovoltaic viability“. Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6367/.
Der volle Inhalt der QuelleBisconti, Raffaella. „Optical modelling and optimisation of Spheral Solar'T'M Cells“. Thesis, Northumbria University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245206.
Der volle Inhalt der QuelleAdkins, Deborah Anne. „Experimental and numerical modelling of mid-concentration photovoltaic concentrator systems“. Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.594866.
Der volle Inhalt der QuelleAseeri, Ahmed. „Modelling and simulation of fuel cell/photovoltaic hybrid power system“. Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/8280.
Der volle Inhalt der QuelleBlack, Jonathan Paul. „Mathematical modelling of electronic contact mechanisms in silicon photovoltaic cells“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:ff671215-5f05-4ef0-a876-3f474a8450c9.
Der volle Inhalt der QuelleCzekala, Piotr. „Modelling of molecules on surfaces and thin-film photovoltaic absorbers“. Thesis, University of Liverpool, 2013. http://livrepository.liverpool.ac.uk/16755/.
Der volle Inhalt der QuelleSyres, Karen Louise. „Molecular adsorption on TiO2 surfaces : modelling potential biomedical and photovoltaic devices“. Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/molecular-adsorption-on-tio2-surfaces-modelling-potential-biomedical-and-photovoltaic-devices(14c1f1a6-7650-43e2-b8cc-9c9e102f6923).html.
Der volle Inhalt der QuelleZarmai, Musa Tanko. „Modelling of solder interconnection's performance in photovoltaic modules for reliability prediction“. Thesis, University of Wolverhampton, 2016. http://hdl.handle.net/2436/617782.
Der volle Inhalt der QuelleSokolov, Michael. „Small-signal modelling of maximum power point tracking for photovoltaic systems“. Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/39348.
Der volle Inhalt der QuelleEbrahim, Mila. „Performance Evaluation of a Photovoltaic/Thermal (PVT) Collector with Numerical Modelling“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302122.
Der volle Inhalt der QuelleEn panel med kombinerad teknik av både solceller och termisk solfångare (PVT) kan producera både elektricitet och värme samtidigt. Forskning har visat att det kan finnas flera fördelar med att integrera PVT-paneler med ett bergvärmesystem, eftersom det mjliggör lagring av termisk energi över året. Dessutom leder ett sådant system till lägre drifttemperaturer som kan öka PVT-panelens effektivitet och livslängd. Syftet med studien är att presentera den elektriska och termiska prestandan av en PVT-panel utvecklat av Solhybrid i Småland AB för olika driftförhållanden som kan uppstå på grund av olika väderförhållanden och inlopps-temperaturer när panelerna är kopplade till ett bergvärmesystem. Vidare utvärderas prestandan för denna panel med ASHRAEmetoden (standard 93-2003), för att möjliggöra jämförelse med andra PVT-paneler. Modelleringsverktyget som använts i studien är mjukvaran COMSOL Multiphysics, som använder finita elementmetoden för att lösa partiella differentialekvationer i värmeöverförings-och flödesproblem. Baserat på prestandakurvorna som presenteras i resultatet, är den termiska och elektriska verkningsgraden approximativt 48.0-53.4% respektive 19.0-19.2% för en reducerad temperatur med värdet noll, en solstrålning mellan 800-1000 W/m2, för en massflödeshastighet på 0.026 kg/sm2 som beslutades som den mest lämpliga för att öka den termiska prestandan. Resultaten resulterade i en värmeavledningsfaktor (FR) och total värmeförlustkoefficient (UL) på 0.56-0.62 respektive 53.4-53.5 W/m2 K. Resultaten på PVT-panelens prestanda under olika väderförhållanden visar att vattnets inloppstemperatur kan påverka drifttiden och mängden termisk energi som kan extraheras under året avsevärt, speciellt i nordiskt klimat. För att bedöma korrektheten i resultaten och den skapade modellen rekommenderas experimentell testning av den studerade PVT-panelen.
Brivio, Federico. „Atomistic modelling of perovskite solar cells“. Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698992.
Der volle Inhalt der QuelleLam, King-hang. „Techniques for dynamic modelling of BIPV in supporting system design and BEMS“. Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39558460.
Der volle Inhalt der QuelleQuintana, Samer. „Building integrated photovoltaic (BIPV) modelling for a demo site in Ludvika based on building information modelling (BIM) platform“. Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-29078.
Der volle Inhalt der QuelleMartin, C. M. „Modelling the Effect of the Interface Morphology in Organic-Inorganic Photovoltaic Devices“. Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504434.
Der volle Inhalt der QuelleBraun, Felix Maximilian. „Modelling of light-trapping structures and their application in organic photovoltaic devices“. Thesis, University College London (University of London), 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437362.
Der volle Inhalt der QuelleChiodetti, Matthieu. „Bifacial PV plants: performance model development and optimization of their configuration“. Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172516.
Der volle Inhalt der QuelleFialho, Luís André Pereira. „Photovoltaic generation with energy storage integrated into the electric grid: modelling, simulation and experimentation“. Doctoral thesis, Universidade de Évora, 2019. http://hdl.handle.net/10174/25361.
Der volle Inhalt der QuelleVanden, Eynde Nicholas. „Modelling of a stand alone photovoltaic system with dedicated hybrid battery energy storage system“. Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/11932.
Der volle Inhalt der QuelleIncludes bibliographical references.
The purpose of this thesis project was to model and simulate a stand-alone photovoltaic (PV) plant that utilized the maximum power point tracking (MPPT) technique and included a hybrid battery energy storage system (BESS). The model consisted of five main components namely; the photovoltaic module, maximum power point tracking technique, hybrid battery energy storage system, controller and load.
Lam, King-hang, und 林勁恆. „Techniques for dynamic modelling of BIPV in supporting system design and BEMS“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39558460.
Der volle Inhalt der QuelleBoreland, Matt School of Electrical Engineering UNSW. „Laser Crystallisation of Silicon for Photovoltaic Applications using Copper Vapour Lasers“. Awarded by:University of New South Wales. School of Electrical Engineering, 1999. http://handle.unsw.edu.au/1959.4/17190.
Der volle Inhalt der QuelleLammert, Gustav [Verfasser]. „Modelling, Control and Stability Analysis of Photovoltaic Systems in Power System Dynamic Studies / Gustav Lammert“. Kassel : Kassel University Press, 2019. http://d-nb.info/1196034125/34.
Der volle Inhalt der QuelleHofmann, Martin [Verfasser]. „Analysis and improvement of irradiance modelling algorithms for the simulation of photovoltaic systems / Martin Hofmann“. Hannover : Gottfried Wilhelm Leibniz Universität, 2019. http://d-nb.info/1196809119/34.
Der volle Inhalt der QuelleVika, Håvard Breisnes. „Modelling of Photovoltaic Modules with Battery Energy Storage in Simulink/Matlab : With in-situ measurement comparisons“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26128.
Der volle Inhalt der QuelleZacharopoulos, Aggelos. „Optical design modelling and experimental characterisation of line-axis concentrators for solar photovoltaic and thermal applications“. Thesis, University of Ulster, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342344.
Der volle Inhalt der QuelleClemente, Andres. „Design and modelling of a photovoltaic driven fan solar air heater for drying woodchip in Scotland“. Thesis, Edinburgh Napier University, 2011. http://researchrepository.napier.ac.uk/Output/4417.
Der volle Inhalt der QuelleAdeleke, Adedayo Kelvin. „Web-based GIS modelling of building-integrated solar photovoltaic system for the City of Cape Town“. Doctoral thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29181.
Der volle Inhalt der QuelleChong, Benjamin Vui Ping. „Modelling and controlling of integrated photovoltaic-module and converter systems for partial shading operation using artificial intelligence“. Thesis, University of Leeds, 2010. http://etheses.whiterose.ac.uk/11321/.
Der volle Inhalt der QuelleMehranfar, Shayan. „Finite Element Modelling and On-Site Measurements for Roof Mounted Photovoltaic Solar Panels under High Wind Load“. Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31748.
Der volle Inhalt der QuelleMalm, Ulf. „Modelling and Degradation Characteristics of Thin-film CIGS Solar Cells“. Doctoral thesis, Uppsala University, Solid State Electronics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9291.
Der volle Inhalt der QuelleThin-film solar cells based around the absorber material CuIn1-xGaxSe2 (CIGS) are studied with respect to their stability characteristics, and different ways of modelling device operation are investigated. Two ways of modelling spatial inhomogeneities are detailed, one fully numerical and one hybrid model. In the numerical model, thin-film solar cells with randomized parameter variations are simulated showing how the voltage decreases with increasing material inhomogeneities.
With the hybrid model, an analytical model for the p-n junction action is used as a boundary condition to a numerical model of the steady state electrical conduction in the front contact layers. This also allows for input of inhomogeneous material parameters, but on a macroscopic scale. The simpler approach, compared to the numerical model, enables simulations of complete cells. Effects of material inhomogeneities, shunt defects and grid geometry are simulated.
The stability of CIGS solar cells with varying absorber thickness, varying buffer layer material and CIGS from two different deposition systems are subjected to damp heat treatment. During this accelerated ageing test the cells are monitored using characterization methods including J-V, QE, C-V and J(V)T. The degradation studies show that the typical VOC decrease experienced by CIGS cells subjected to damp heat is most likely an effect in the bulk of the absorber material.
When cells encapsulated with EVA are subjected to the same damp heat treatment, the effect on the voltage is considerably reduced. In this situation the EVA is saturated with moisture, representing a worst case scenario for a module in operation. Consequently, real-life modules will not suffer extensively from the VOC degradation effect, common in unprotected CIGS devices.