Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Modeling of electronic processes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Modeling of electronic processes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Modeling of electronic processes"
Ristau, Detlev, und Henrik Ehlers. „Advanced control and modeling of deposition processes“. Chinese Optics Letters 11, S1 (2013): S10203. http://dx.doi.org/10.3788/col201311.s10203.
Der volle Inhalt der QuelleBelovod, K. A. „The modeling of processes for creating electronic learning tools“. Scientific and Technical Information Processing 37, Nr. 2 (April 2010): 137–42. http://dx.doi.org/10.3103/s0147688210020085.
Der volle Inhalt der QuelleMadera, Alexander Georgievitch. „Modeling thermal feedback effect on thermal processes in electronic systems“. Computer Research and Modeling 10, Nr. 4 (August 2018): 483–94. http://dx.doi.org/10.20537/2076-7633-2018-10-4-483-494.
Der volle Inhalt der QuelleMadera, A. G. „Interval-stochastic thermal processes in electronic systems: Analysis and modeling“. Journal of Engineering Thermophysics 26, Nr. 1 (Januar 2017): 17–28. http://dx.doi.org/10.1134/s1810232817010039.
Der volle Inhalt der QuelleMadera, A. G. „Interval-stochastic thermal processes in electronic systems: Modeling in practice“. Journal of Engineering Thermophysics 26, Nr. 1 (Januar 2017): 29–38. http://dx.doi.org/10.1134/s1810232817010040.
Der volle Inhalt der QuelleBudanov, A. V., E. A. Tatokchin, G. I. Kotov und D. S. Sayko. „Math modeling of electronic processes and deep level ionization kinetic“. Proceedings of the Voronezh State University of Engineering Technologies, Nr. 2 (01.01.2016): 78–86. http://dx.doi.org/10.20914/2310-1202-2016-2-78-86.
Der volle Inhalt der QuelleKuhn, W. B., Xin He und M. Mojarradi. „Modeling spiral inductors in SOS processes“. IEEE Transactions on Electron Devices 51, Nr. 5 (Mai 2004): 677–83. http://dx.doi.org/10.1109/ted.2004.826868.
Der volle Inhalt der QuellePetrushevskaya, A. A. „DIGITAL ELECTRONICS PRODUCTION MODELING AND PRODUCT QUALITY ASSURANCE“. Issues of radio electronics, Nr. 1 (20.01.2019): 46–50. http://dx.doi.org/10.21778/2218-5453-2019-1-46-50.
Der volle Inhalt der QuellePodoliak, O. O., V. A. Ovchinnikova, S. N. Selyahov, T. G. Kormin und A. V. Korejatov. „Optimization methods of assembly processes of defibrillation equipment“. Ural Radio Engineering Journal 5, Nr. 4 (2021): 410–31. http://dx.doi.org/10.15826/urej.2021.5.4.005.
Der volle Inhalt der QuelleEremina, V. V., O. V. Zhilindina und E. A. Podolko. „MODELING THE ELECTRONIC CHARACTERISTICS OF ELECTRICAL CERAMICS. PART. II“. Informatika i sistemy upravleniya, Nr. 1 (2021): 66–74. http://dx.doi.org/10.22250/isu.2021.67.66-74.
Der volle Inhalt der QuelleDissertationen zum Thema "Modeling of electronic processes"
Gagliardi, Alessio. „Theoretical modeling and simulation of electron-phonon scattering processes in molecular electronic devices“. [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=98556282X.
Der volle Inhalt der QuelleQian, Zhiguang. „Computer experiments [electronic resource] : design, modeling and integration /“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11480.
Der volle Inhalt der QuelleGanesan, Admanathan. „Modeling of distributed layouts for dynamic period cases“. Thesis, Wichita State University, 2006. http://hdl.handle.net/10057/1482.
Der volle Inhalt der QuelleThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Industrial and Manufacturing Engineering.
Hontz, Eric Richard. „Electronic processes in organic optoelectronics : insights gained through modeling and magnetic field effects“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98794.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 185-232).
Organic photovoltaics (OPVs) and organic light-emitting diodes (LEDs) are organic optoelectronics offering a number of unique benefits that may play an important role in the future of clean energy generation and efficient energy consumption. In this thesis, we explore key electronic processes in OPVs and OLEDs, with a major focus on quantum-mechanical kinetic modeling of magnetic field effects (MFEs) that probe underlying subprocesses. Certain organics are capable of dividing excited states in a process termed singlet fission, which can increase the maximum theoretical efficiency of an OPV by a factor of nearly 1/3. The MFEs on photocurrent measurements from our collaborators are combined with theoretical models to determine optimal device architectures for singlet fission OPVs, allowing us to exceed the conventional limit of one electron per photon. We also use MFEs to determine the spin of charge transfer states most efficient at generating photocurrent and demonstrate microscopic insight into the mechanism of their diffusion, offering new design principles for the engineering of donor-acceptor interfaces in OPVs. Thermally activated delayed fluorescence (TADF) is becoming an increasingly important OLED technology that extracts light from non-emissive triplet states via reverse intersystem crossing (RISC) to the bright singlet state. We use MFEs to prove a rather surprising finding that in TADF materials composed of donor-acceptor bends, the electron-hole distance fluctuates as a function of time, resulting in spontaneous cycling between states that are advantageous to fluorescence at one moment and then advantageous to RISC at another. Combined with additional topics in the fields of metal organic frameworks and reaction pathfinding methods, the work in this thesis provides insight into how to achieve optimal performance in OPV and OLED devices, which may serve an important role in the future of our energy landscape.
by Eric Richard Hontz.
Ph. D. in Physical Chemistry
Cho, Hyun Cheol. „Dynamic Bayesian networks for online stochastic modeling“. abstract and full text PDF (free order & download UNR users only), 2006. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3221394.
Der volle Inhalt der QuelleTóth, G. (Géza). „Computer modeling supported fabrication processes for electronics applications“. Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514284717.
Der volle Inhalt der QuelleShantaram, Sandeep Lall Pradeep. „Explicit finite element modeling in conjunction with digital image correlation based life prediction of lead-free electronics under shock-impact“. Auburn, Ala, 2009. http://hdl.handle.net/10415/1894.
Der volle Inhalt der QuelleEgorova, Dassia. „Modeling of ultrafast electron transfer processes multi-level Redfield theory and beyond /“. [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967134420.
Der volle Inhalt der QuelleWang, Hong. „Numerical modelling of the tilt casting processes of titanium alumindes“. Thesis, University of Greenwich, 2008. http://gala.gre.ac.uk/6336/.
Der volle Inhalt der QuelleHwang, Jung Yoon. „Spatial stochastic processes for yield and reliability management with applications to nano electronics“. Texas A&M University, 2004. http://hdl.handle.net/1969.1/1500.
Der volle Inhalt der QuelleBücher zum Thema "Modeling of electronic processes"
Tennyson, Roderick C., und Arnold E. Kiv, Hrsg. Computer Modelling of Electronic and Atomic Processes in Solids. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5662-2.
Der volle Inhalt der Quelle1937-, Tennyson Roderick C., Kiv Arnold E, North Atlantic Treaty Organization. Scientific Affairs Division. und NATO Advanced Research Workshop on Computer Modelling of Electronic and Atomic Processes in Solids (1996 : Wrocław, Poland), Hrsg. Computer modelling of electronic and atomic processes in solids. Dordrecht: Kluwer Academic, 1997.
Den vollen Inhalt der Quelle findenDimpsey, Robert Tod. Performance evaluation and modeling techniques for parallel processors. Urbana, Ill: Center for Reliable and High-Performance Computing, Coordinated Science Laboratory, College of Engineering, University of Illinois at Urbana-Champaign, 1992.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Performance evaluation and modeling techniques for parallel processors. Urbana, Ill: Center for Reliable and High-Performance Computing, Coordinated Science Laboratory, College of Engineering, University of Illinois at Urbana-Champaign, 1992.
Den vollen Inhalt der Quelle findenZhao, Yaoyao (Fiona). Information Modeling for Interoperable Dimensional Metrology. London: Springer-Verlag London Limited, 2011.
Den vollen Inhalt der Quelle findenKhalid, Al-Begain, Heindl Armin und Telek Miklós, Hrsg. Analytical and stochastic modeling techniques and applications: 15th international conference, ASMTA 2008, Nicosia, Cyprus, June 4-6, 2008 : proceedings. Berlin: Springer, 2008.
Den vollen Inhalt der Quelle findenInternational, Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits (5th 1994 Honolulu Hawaii). International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD V : Hilton Hawaiian Village, Honolulu, HI June 5-6, 1994. New York: Institute of Electrical and Electronics Engineers, 1994.
Den vollen Inhalt der Quelle findenDavid, Hutchison. Analytical and Stochastic Modeling Techniques and Applications: 16th International Conference, ASMTA 2009, Madrid, Spain, June 9-12, 2009. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Den vollen Inhalt der Quelle findenTrindle, Carl. Electronic Structure Modeling. London: Taylor and Francis, 2008.
Den vollen Inhalt der Quelle findenIguchi, Manabu, und Olusegun J. Ilegbusi. Modeling Multiphase Materials Processes. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7479-2.
Der volle Inhalt der QuelleBuchteile zum Thema "Modeling of electronic processes"
Schürmann, Bernd. „Modeling Design Data and Design Processes in the PLAYOUT CAD Framework“. In Current Issues in Electronic Modeling, 161–89. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1347-2_5.
Der volle Inhalt der QuelleAlexandrova, Anastassia N. „Quantum Mechanical Insights into Biological Processes at the Electronic Level“. In Computational Modeling of Biological Systems, 117–64. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2146-7_6.
Der volle Inhalt der QuelleShiktorov, P., V. Gružinskis, E. Starikov, L. Reggiani und L. Varani. „Hydrodynamic Modeling of Electronic Noise by the Transfer Impedance Method“. In Simulation of Semiconductor Devices and Processes, 314–17. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-6619-2_76.
Der volle Inhalt der QuelleCrosta, Stefano, Jean-Christophe Pazzaglia und Hendrik Schöttle. „Modelling and Securing European Justice Workflows“. In ISSE 2005 — Securing Electronic Business Processes, 412–21. Wiesbaden: Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-322-85237-3_43.
Der volle Inhalt der QuelleParilis, E. „Modeling Non-Metal Surface Damage Created by Multiply-Charged Ions“. In Computer Modelling of Electronic and Atomic Processes in Solids, 107–13. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5662-2_11.
Der volle Inhalt der QuelleLukatsky, D. B., und E. Rysiakiewicz-Pasek. „Modeling of Inhomogeneity in Solid Coatings Obtained from Water Suspensions“. In Computer Modelling of Electronic and Atomic Processes in Solids, 69–77. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5662-2_7.
Der volle Inhalt der QuelleChan, K. W., M. J. Teague, N. J. Schofield und J. I. Vette. „Modeling of Electron Time Variations in the Radiation Belts“. In Quantitative Modeling of Magnetospheric Processes, 121–49. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm021p0121.
Der volle Inhalt der QuelleKakarountas, Athanasios, und Vasileios Chioktour. „Degradation of Reliability of Digital Electronic Equipment Over Time and Redundant Hardware-based Solutions“. In Statistical Modeling of Reliability Structures and Industrial Processes, 217–28. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003203124-13.
Der volle Inhalt der QuelleHigbie, P. R., D. N. Baker, E. W. Hones und R. D. Belian. „Pitch Angle Distributions of >30 Kev Electrons at Geostationary Altitudes“. In Quantitative Modeling of Magnetospheric Processes, 203–19. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm021p0203.
Der volle Inhalt der QuelleFeldmann, K., und O. Meedt. „Recycling and Disassembly of Electronic Devices“. In Life-Cycle Modelling for Innovative Products and Processes, 233–45. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-0-387-34981-7_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Modeling of electronic processes"
Zhuravleva, I. „RADIATION EFFECTS IN INTEGRATED CHIPS WHEN EXPOSED TO IONIZING RADIATION“. In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_214-218.
Der volle Inhalt der QuelleKADOCHNIKOV, I. N., und I. V. ARSENTIEV. „MODELING OF VIBRATION-ELECTRONIC-CHEMISTRY COUPLING IN NONEQUILIBRIUM AIR PLASMA UNDER SHOCK CONDITIONS“. In NONEQUILIBRIUM PROCESSES. TORUS PRESS, 2018. http://dx.doi.org/10.30826/nepcap2018-1-02.
Der volle Inhalt der QuelleKuc'ko, Pavel, V. Zolnikov, Svetlana Evdokimova, O. Oksyuta und Aleksey Platonov. „CURRENT STATE OF THE SPACE ELEMENT BASE“. In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_264-269.
Der volle Inhalt der QuelleMerzlov, V. S., A. Ch Khatagov und I. V. Kryzhanovskaya. „Modeling Electronic Processes in the Monotron Gap“. In 2018 International Russian Automation Conference (RusAutoCon). IEEE, 2018. http://dx.doi.org/10.1109/rusautocon.2018.8501751.
Der volle Inhalt der QuelleElmanov, Abbos, Sirojiddin Kengboyev, Nazirjon Safarov und Adham Norkobilov. „Modeling of Laser-Assisted Cutting of Thin-Walled Steel Gears“. In International Electronic Conference on Processes, 146. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105146.
Der volle Inhalt der QuelleHa, Kim Thanh Vy, Tuan-Anh Nguyen, Quoc-Lan Nguyen, Van-Vinh Dang, Van-Han Dang, Hoang-Luan Van und Le-Na T. Pham. „Two-Phase Stefan Problem for the Modeling of Urea Prilling Tower“. In International Electronic Conference on Processes. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/ecp2023-14745.
Der volle Inhalt der QuelleMescheryakov, Sergey, Artem Groshev und Tatyana Skvortsova. „ANALYSIS OF EXISTING METHODS FOR MODELING THE IMPACT OF SPACE RADIATION ON THE ELECTRONIC COMPONENT BASE“. In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_270-275.
Der volle Inhalt der QuelleProvatas, Vasileios, Stavros Dapontis, Michalis Konsolakis und Dimitris Ipsakis. „Modeling and Control of Hydrogen Production Systems through Water Electrolysis and Res Power“. In International Electronic Conference on Processes, 51. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105051.
Der volle Inhalt der QuelleOlguín-Rojas, José Arturo, Paulina Aguirre-Lara, Maria Mariana González Urrieta, José Miguel Téllez Zepeda, Fernando Cansino Jacome und Guadalupe del Carmen Rodriguez-Jimenes. „Modeling of the Fluidized Bed Drying Process of Pirul (Schinus molle L.) Leaves“. In International Electronic Conference on Processes, 64. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105064.
Der volle Inhalt der QuelleEvdokimova, Svetlana, D. Bubenin und R. Lopatin. „ANALYSIS OF THE CAPABILITIES OF MODERN MEDICAL INFORMATION SYSTEMS“. In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_31-37.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Modeling of electronic processes"
Chubenko, Oksana. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications. Office of Scientific and Technical Information (OSTI), Januar 2019. http://dx.doi.org/10.2172/1575060.
Der volle Inhalt der QuelleNewton, M. D., S. W. Feldberg und J. F. Smalley. Theory and computational modeling: Medium reorganization and donor/acceptor coupling in electron transfer processes. Office of Scientific and Technical Information (OSTI), März 1998. http://dx.doi.org/10.2172/653946.
Der volle Inhalt der QuelleModlo, Yevhenii O., Serhiy O. Semerikov, Stanislav L. Bondarevskyi, Stanislav T. Tolmachev, Oksana M. Markova und Pavlo P. Nechypurenko. Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], Februar 2020. http://dx.doi.org/10.31812/123456789/3677.
Der volle Inhalt der QuelleTichomirova, T. M., und A. G. Sukiasyan. Electronic textbook «Econometric Modeling». Ailamazyan Program Systems Institute of Russian Academy of Sciences, Mai 2024. http://dx.doi.org/10.12731/ofernio.2024.25333.
Der volle Inhalt der QuelleSarma, Sankar D. Ultrafast Electronic Processes in Semiconductor Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, Februar 2000. http://dx.doi.org/10.21236/ada384374.
Der volle Inhalt der QuelleBuckmaster, John. Modeling of Physical Processes. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada408985.
Der volle Inhalt der QuelleRatcliff, Roger. Modeling Perceptual Decision Processes. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada609771.
Der volle Inhalt der QuelleBuchmaster. Modeling of Physical Processes. Fort Belvoir, VA: Defense Technical Information Center, Mai 1999. http://dx.doi.org/10.21236/ada384825.
Der volle Inhalt der QuelleMacDiarmid, Alan G. Conducting Electronic Polymers by Non-Redox Processes. Fort Belvoir, VA: Defense Technical Information Center, Juni 1988. http://dx.doi.org/10.21236/ada204408.
Der volle Inhalt der QuelleMacDiarmid, Alan G. Conducting Electronic Polymers by Non-Redox Processes. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada205551.
Der volle Inhalt der Quelle