Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Model predictive controller (MPC)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Model predictive controller (MPC)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Model predictive controller (MPC)"
Rezaee, Alireza. „Model predictive Controller for Mobile Robot“. Transactions on Environment and Electrical Engineering 2, Nr. 2 (27.06.2017): 18. http://dx.doi.org/10.22149/teee.v2i2.96.
Der volle Inhalt der QuelleAlasali, Feras, Stephen Haben, Husam Foudeh und William Holderbaum. „A Comparative Study of Optimal Energy Management Strategies for Energy Storage with Stochastic Loads“. Energies 13, Nr. 10 (20.05.2020): 2596. http://dx.doi.org/10.3390/en13102596.
Der volle Inhalt der QuelleWahid, Abdul, und Richi Adi. „MODELING AND CONTROL OF MULTIVARIABLE DISTILLATION COLUMN USING MODEL PREDICTIVE CONTROL USING UNISIM“. SINERGI 20, Nr. 1 (01.02.2016): 14. http://dx.doi.org/10.22441/sinergi.2016.1.003.
Der volle Inhalt der QuelleXu, Ying, Wentao Tang, Biyun Chen, Li Qiu und Rong Yang. „A Model Predictive Control with Preview-Follower Theory Algorithm for Trajectory Tracking Control in Autonomous Vehicles“. Symmetry 13, Nr. 3 (26.02.2021): 381. http://dx.doi.org/10.3390/sym13030381.
Der volle Inhalt der QuelleKümpel, Alexander, Phillip Stoffel und Dirk Müller. „Self-adjusting model predictive control for modular subsystems in HVAC systems“. Journal of Physics: Conference Series 2042, Nr. 1 (01.11.2021): 012037. http://dx.doi.org/10.1088/1742-6596/2042/1/012037.
Der volle Inhalt der QuelleChrif, Labane, und Zemalache Meguenni Kadda. „Aircraft Control System Using Model Predictive Controller“. TELKOMNIKA Indonesian Journal of Electrical Engineering 15, Nr. 2 (01.08.2015): 259. http://dx.doi.org/10.11591/tijee.v15i2.1538.
Der volle Inhalt der QuelleLio, Wai Hou, John Anthony Rossiter und Bryn Llywelyn Jones. „Modular Model Predictive Control upon an Existing Controller“. Processes 8, Nr. 7 (16.07.2020): 855. http://dx.doi.org/10.3390/pr8070855.
Der volle Inhalt der QuelleKumavat, Mayur, und Sushil Thale. „Analysis of CSTR Temperature Control with PID, MPC & Hybrid MPC-PID Controller“. ITM Web of Conferences 44 (2022): 01001. http://dx.doi.org/10.1051/itmconf/20224401001.
Der volle Inhalt der QuelleMunoz, Samuel Arce, Junho Park, Cristina M. Stewart, Adam M. Martin und John D. Hedengren. „Deep Transfer Learning for Approximate Model Predictive Control“. Processes 11, Nr. 1 (07.01.2023): 197. http://dx.doi.org/10.3390/pr11010197.
Der volle Inhalt der QuelleVrečko, D., N. Hvala und M. Stražar. „The application of model predictive control of ammonia nitrogen in an activated sludge process“. Water Science and Technology 64, Nr. 5 (01.09.2011): 1115–21. http://dx.doi.org/10.2166/wst.2011.477.
Der volle Inhalt der QuelleDissertationen zum Thema "Model predictive controller (MPC)"
Bangalore, Narendranath Rao Amith Kaushal. „Online Message Delay Prediction for Model Predictive Control over Controller Area Network“. Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78626.
Der volle Inhalt der QuelleMaster of Science
Mattsson, Mathias, und Rasmus Mehler. „Optimal Vehicle Speed Control Using a Model Predictive Controller for an Overactuated Vehicle“. Thesis, Linköpings universitet, Fordonssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119480.
Der volle Inhalt der QuelleClaro, Érica Rejane Pereira. „Localização de canais afetando o desempenho de controladores preditivos baseados em modelos“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/149927.
Der volle Inhalt der QuelleThe scope of this dissertation is the development of a method to detect the models of the dynamic matrix that are affecting the performance of model-based predictive controllers. The proposed method is based on the cross correlation analysis between the nominal controller error and an estimate of the contribution of each channel to the controller output, filtered by the controller nominal sensitivity function. The method can be used in the performance assessment of controllers employing variables controlled at the setpoint and/or those controlled within ranges. This dissertation presents the results of the successful application of the method to the quadruple-tank process (JOHANSSON, 2000), for which three scenarios were evaluated. In the first scenario, the method correctly located gain and dynamic mismatches on a model-based predictive controller (MPC controller). In the second one, the method was used to evaluate the influence of an external variable to improve the performance of a controller affected by unmeasured disturbances. In the third scenario, the method located null models that should be included in the dynamic matrix of a decentralized MPC controller. The results of the three scenarios were compared with the ones obtained through the method proposed by BADWE, GUDI e PATWARDHAN (2009). The proposed method was considered more robust than the reference one for not requiring parameters estimation performed by the user to provide good results. This dissertation also includes a case study about the application of the method on the performance assessment of an industrial linear predictive controller of decentralized structure. The controller has twelve controlled variables, eight manipulated variables, and four unmeasured disturbances and is applied to a propylene-propane fractionation system of a petrochemical industry. The performance assessment allowed reducing the scope of the controller revision to nineteen channels of the models matrix, fourteen of which were null models that should be included in the controller. The efficacy of the proposed method was confirmed by repeating the model quality evaluation for all the controlled variables.
Paula, Neander Alessandro da Silva. „MPC adaptativo - multimodelos para controle de sistemas não-lineares“. Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-14052009-000836/.
Der volle Inhalt der QuelleDuring the operation of a MPC, the plant can change the operation point mainly due to management decision or due to the presence of measured or unmeasured disturbances. Thus, the model of the controller must be adapted to improve the control in the new operation conditions. In such a way, a better control policy can be achieved if a large number of models are identified at the possible operation points and it is available an adaptive controller that is capable of selecting the best model. In this work is presented a methodology of adaptive control with on-line identification of the most adequate model which belongs to a set of models previously obtained. The proposed methodology considers a two-layer controller and process excitation by a GBN signal in the LP optimization layer with the controller in closed loop mode. It is also presented the adaptive controller validation by comparing the proposed approach with two different techniques - MMPC and ARX Identification, to confirm the good results with this new methodology to the adaptive controller.
Venieri, Giulia. „Development and testing of Model Predictive Controllers for an automotive organic Rankine cycle unit“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Den vollen Inhalt der Quelle findenAndina, Elisa. „Complexity and Conservatism in Linear Robust Adaptive Model Predictive Control“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Den vollen Inhalt der Quelle findenRokebrand, Luke Lambertus. „Towards an access economy model for industrial process control“. Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/79650.
Der volle Inhalt der QuelleDissertation (MEng)--University of Pretoria, 2020.
Electrical, Electronic and Computer Engineering
MEng
Unrestricted
Pitta, Renato Neves. „Aplicação industrial de re-identificação de modelos de MPC em malha fechada“. Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-10042012-115001/.
Der volle Inhalt der QuelleModel identification is usually the most significant and time-consuming task of implementing and maintaining control systems based on models (MPC) concerning the complexity of the task and the importance of the model for a good performance of the controller. After being implemented the MPC tends to remain with the original model even after process changes have occurred, leading to a degradation of the controller actions. The present work shows an industrial application of closed-loop re-identification. The plant excitation methodology used here was presented in Sotomayor et al. (2009). Such technique allows for obtaining the behavior of the process variables with the MPC still working and without modifying the MPC structure, increasing automation and safety of the re-identification procedure. The system re-identified was a debutanizer column of a Brazilian refinery being the models part of the multivariable predictive control of this distillation column. The methodology was applied with reasonable success managing to obtain 6 new models to update this MPC, and resulting in improved control performance.
Jansson, Lovisa, und Amanda Nilsson. „Evaluation of Model-Based Design Using Rapid Control Prototyping on Forklifts“. Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158715.
Der volle Inhalt der QuelleSyftet med detta examensarbete är att utvärdera Rapid Control Prototyping vil-ket är en del av modellbaserad utveckling som gör det möjligt att enkelt testamodeller av styralgoritmer direkt på det riktiga systemet. Utvärderingen är gjordgenom att testa två olika regulatorer, en P-regulator med parameterstyrning ochen linjär modelbaserad prediktionsregulator (mpc), för sänkningen av gafflarnapå en truck.De två regulatorerna testas först i en simuleringsmiljö. I arbetet används två olikasimuleringsmodeller: en fysikalisk där endast mindre parameterjusteringar görsoch en estimerad black-box modell. Efter att regulatorerna utvärderas i simule-ringsmiljön testas de även på en riktig truck med hjälp av automatisk kodgenere-ring och exekvering på en dedikerad hårdvaruplattform.De konstruerade regulatorerna har olika för- och nackdelar eftersom en är olinjäroch envariabel, P-regulatorn, och en är linjär men flervariabel,mpc:n. P-regulatornhar en mjuk rörelse i alla lägen utan att bli för långsam, till skillnad frånmpc:n.Nackdelen med P-regulatorn, jämfört medmpc:n är att det inte finns någon ga-ranti för att P-regulatorn håller hastighetsbegränsningen sommpc:n gör.P-regulatorns bättre prestanda överväger garantin om att hålla hastighetsbegräns-ningen och därför dras slutsatsen att olinjäriteterna i systemet överväger effekter-na av det faktum att det också är flervariabelt. En annan slutsats är att modell-baserad utveckling och Rapid Control Prototyping gör det möjligt att testa fleraolika idéer på en riktig gaffeltruck utan att spendera för mycket tid på implemen-tationen.
Cruz, Diego Déda Gonçalves Brito. „Detecção de erros planta-modelo em sistemas de controle preditivo (MPC) utilizando técnicas de informação mútua“. Universidade Federal de Sergipe, 2017. https://ri.ufs.br/handle/riufs/5028.
Der volle Inhalt der QuelleModel predictive control (MPC) strategies have become the standard for advanced control applications in the process industry. Significant benefits are generated from the MPC's capacity to ensure that the plant operates within its constraints more profitably. However, like any controller, after some time under operation, MPCs rarely function as when they were initially designed. A large percentage of performance degradation of MPC is associated with the deterioration of model that controller uses to predict process outputs and calculate inputs. The objective of the present work is implementation of mathematical methods that can be used to detect model-plant mismatch in linear and nonlinear MPC systems. In this work, techniques based on cross correlation, partial correlation and mutual information are implemented and tested by numerical simulation in case studies characteristic of the petrochemical industry, represented by linear and nonlinear models, operating under MPC control. The results obtained through the applying the techniques are analyzed and compared as to their efficiency is not intended to offer their potential for real industrial applications.
Estratégias de controle preditivo (MPC) têm-se tornado o padrão para aplicações de controle avançado na indústria de processos. Os benefícios significativos são gerados a partir da habilidade do controlador MPC de assegurar que a planta opere dentro das restrições de forma mais lucrativa. Porém, como todo controlador, depois de algum tempo em operação, os MPCs raramente funcionam como quando foram inicialmente projetados. Uma grande porcentagem da degradação do desempenho dos controladores MPC está associada à deterioração do modelo que o controlador usa para fazer a predição das saídas do processo e calcular as entradas. O objetivo do presente trabalho é a implementação de métodos matemáticos que possam ser utilizados para a detecção de erros planta-modelo em sistemas de controle MPC lineares e não lineares. Neste trabalho, técnicas baseadas em correlação cruzada, correlação parcial e informação mútua são implementadas e testadas por simulação numérica em estudos de caso característicos da indústria petroquímica, representados por modelos lineares e não lineares, operando sob controle MPC. Os resultados obtidos através da aplicação das técnicas são analisados e comparados quanto à sua eficiência no objetivo proposto avaliando seu potencial para aplicações industriais reais.
Bücher zum Thema "Model predictive controller (MPC)"
Takács, Gergely. Model Predictive Vibration Control: Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures. London: Springer London, 2012.
Den vollen Inhalt der Quelle findenKhaled, Nassim, und Bibin Pattel. Practical Design and Application of Model Predictive Control: MPC for MATLAB and Simulink Users. Butterworth-Heinemann Limited, 2018.
Den vollen Inhalt der Quelle findenTakács, Gergely, und Boris Rohaľ-Ilkiv. Model Predictive Vibration Control: Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures. Springer, 2014.
Den vollen Inhalt der Quelle findenModel Predictive Vibration Control Efficient Constrained Mpc Vibration Control For Lightly Damped Mechanical Structures. Springer, 2012.
Den vollen Inhalt der Quelle findenKhaled, Nassim, und Bibin Pattel. Practical Design and Application of Model Predictive Control: MPC for MATLAB® and Simulink® Users. Elsevier Science & Technology Books, 2018.
Den vollen Inhalt der Quelle findenVaez-Zadeh, Sadegh. Predictive, Deadbeat, and Combined Controls. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0005.
Der volle Inhalt der QuelleBuchteile zum Thema "Model predictive controller (MPC)"
Mehmood, Usama, Shouvik Roy, Radu Grosu, Scott A. Smolka, Scott D. Stoller und Ashish Tiwari. „Neural Flocking: MPC-Based Supervised Learning of Flocking Controllers“. In Lecture Notes in Computer Science, 1–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45231-5_1.
Der volle Inhalt der QuelleKlaučo, Martin, und Michal Kvasnica. „Inner Loops with Model Predictive Control Controllers“. In MPC-Based Reference Governors, 53–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17405-7_6.
Der volle Inhalt der QuelleSharma, Veena, Vineet Kumar, R. Naresh und V. Kumar. „MPA Optimized Model Predictive Controller for Optimal Control of an AVR System“. In Intelligent Data Engineering and Analytics, 61–70. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7524-0_6.
Der volle Inhalt der QuelleCamacho, Eduardo F., und Carlos Bordons. „Multivariable MPC“. In Model Predictive Control, 131–66. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3398-8_6.
Der volle Inhalt der QuelleCamacho, Eduardo F., und Carlos Bordons. „Constrained MPC“. In Model Predictive Control, 167–207. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3398-8_7.
Der volle Inhalt der QuelleCamacho, Eduardo F., und Carlos Bordons. „Robust MPC“. In Model Predictive Control, 209–28. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3398-8_8.
Der volle Inhalt der QuelleJonath, Lucas, Jörg Luderich, Jonas Brezina, Ana Maria Gonzalez Degetau und Selim Karaoglu. „Improving the Thermal Behavior of High-Speed Spindles Through the Use of an Active Controlled Heat Pipe System“. In Lecture Notes in Production Engineering, 203–18. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_16.
Der volle Inhalt der QuelleKlaučo, Martin, und Michal Kvasnica. „Model Predictive Control“. In MPC-Based Reference Governors, 15–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17405-7_3.
Der volle Inhalt der QuelleKouvaritakis, Basil, und Mark Cannon. „Introduction to Stochastic MPC“. In Model Predictive Control, 243–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24853-0_6.
Der volle Inhalt der QuelleTakács, Gergely, und Boris Rohal’-Ilkiv. „Basic MPC Formulation“. In Model Predictive Vibration Control, 207–51. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2333-0_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Model predictive controller (MPC)"
Piper, Matthew, Pranav Bhounsule und Krystel K. Castillo-Villar. „How to Beat Flappy Bird: A Mixed-Integer Model Predictive Control Approach“. In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5285.
Der volle Inhalt der QuelleLenssen, Daan, Alberto Bertipaglia, Felipe Santafe und Barys Shyrokau. „Combined Path Following and Vehicle Stability Control using Model Predictive Control“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0645.
Der volle Inhalt der QuelleParry, Adam, Brandon Hencey und Jon Zumberge. „Model Predictive Control for a Synchronous Machine With a Pulsed, Constant-Power Load“. In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3110.
Der volle Inhalt der QuelleVroemen, B. G., H. A. van Essen, A. A. van Steenhoven und J. J. Kok. „Nonlinear Model Predictive Control of a Laboratory Gas Turbine Installation“. In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-100.
Der volle Inhalt der QuelleChen, Xiao, und Qian Wang. „A Data-Driven Thermal Sensation Model Based Predictive Controller for Indoor Thermal Comfort and Energy Optimization“. In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6131.
Der volle Inhalt der QuelleAngatkina, Oyuna, und Andrew Alleyne. „Model Predictive Control of a Pumped Two-Phase Cooling System With Microchannel Heat Exchangers“. In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9143.
Der volle Inhalt der QuelleMazibuko, N., K. T. Akindeji, K. Moloi und G. Sharma. „Improved Model Predictive controller (MPC) for an Automatic Voltage Regulator (AVR)“. In 2024 32nd Southern African Universities Power Engineering Conference (SAUPEC). IEEE, 2024. http://dx.doi.org/10.1109/saupec60914.2024.10445066.
Der volle Inhalt der QuelleRen, Dejin, Wanli Lu, Jidong Lv, Lijun Zhang und Bai Xue. „Model Predictive Control with Reach-avoid Analysis“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/604.
Der volle Inhalt der QuelleLiu, Heng, Wei Sun, Hao Sun, Jianfeng Tao und Chengliang Liu. „A Deep Koopman-Based Model Predictive Control Method for Valve-Controlled Hydraulic Cylinder Systems“. In BATH/ASME 2022 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fpmc2022-89019.
Der volle Inhalt der QuelleLiu, Yilun, Lei Zuo und Xiudong Tang. „Regenerative Vibration Control of Tall Buildings Using Model Predictive Control“. In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3988.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Model predictive controller (MPC)"
Yang, Yu, und Hen-Geul Yeh. Electrical Vehicle Charging Infrastructure Design and Operations. Mineta Transportation Institute, Juli 2023. http://dx.doi.org/10.31979/mti.2023.2240.
Der volle Inhalt der QuelleAn Input Linearized Powertrain Model for the Optimal Control of Hybrid Electric Vehicles. SAE International, März 2022. http://dx.doi.org/10.4271/2022-01-0741.
Der volle Inhalt der Quelle