Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Model"
Bieszk-Stolorz, Beata. „Hazard model versus logit model“. Studia i Prace WNEiZ 45 (2016): 11–22. http://dx.doi.org/10.18276/sip.2016.45/2-01.
Der volle Inhalt der QuelleWierzbiński, Marcin. „Revenue Model in Designing Business Model“. Zeszyty Naukowe Uniwersytetu Szczecińskiego Finanse Rynki Finansowe Ubezpieczenia 79 (2016): 851–68. http://dx.doi.org/10.18276/frfu.2016.79-67.
Der volle Inhalt der QuelleOh. „Low-Frequency Normal Mode Reverberation Model“. Journal of the Acoustical Society of Korea 34, Nr. 3 (2015): 184. http://dx.doi.org/10.7776/ask.2015.34.3.184.
Der volle Inhalt der QuellePołowniak, Piotr, und Mariusz Sobolak. „Mathematical model of globoid worm for use of generating CAD model“. Mechanik, Nr. 2 (Februar 2015): 145/31. http://dx.doi.org/10.17814/mechanik.2015.2.53.
Der volle Inhalt der QuelleWILCZYNSKI, KRZYSZTOF. „A mathematical model of single-screw extrusion. Part X. Experimental verification of the model“. Polimery 45, Nr. 03 (März 2000): 191–96. http://dx.doi.org/10.14314/polimery.2000.191.
Der volle Inhalt der QuelleJabłoński, Marek. „Open data business model: innovative aspects of designing of business“. Studia i Prace WNEiZ 52 (2018): 41–51. http://dx.doi.org/10.18276/sip.2018.52/2-03.
Der volle Inhalt der QuelleMakhan'kov, V. G., Yu P. Rybakov und Valerii I. Sanyuk. „The Skyrme model and strong interactions (On the 30th anniversary of the creation of the Skyrme model)“. Uspekhi Fizicheskih Nauk 162, Nr. 2 (1992): 1. http://dx.doi.org/10.3367/ufnr.0162.199202a.0001.
Der volle Inhalt der QuelleLim, Hee-Jeong, Young-Hee Lee und Hyo-Jung Kwon. „Evaluation of Community Land Model version 3.5-Dynamic Global Vegetation Model over Deciduous Forest in Gwangneung, Korea“. Korean Journal of Agricultural and Forest Meteorology 12, Nr. 2 (30.06.2010): 95–106. http://dx.doi.org/10.5532/kjafm.2010.12.2.095.
Der volle Inhalt der QuelleLei, Y., und S. Y Zhang. „Comparison and selection of growth models using the Schnute model“. Journal of Forest Science 52, No. 4 (09.01.2012): 188–96. http://dx.doi.org/10.17221/4501-jfs.
Der volle Inhalt der QuellePerrin, C., V. Andréassian und C. Michel. „Simple benchmark models as a basis for model efficiency criteria“. River Systems 17, Nr. 1-2 (28.07.2006): 221–44. http://dx.doi.org/10.1127/lr/17/2006/221.
Der volle Inhalt der QuelleDissertationen zum Thema "Model"
Andriushchenko, Roman. „Computer-Aided Synthesis of Probabilistic Models“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-417269.
Der volle Inhalt der QuelleEvers, Ludger. „Model fitting and model selection for 'mixture of experts' models“. Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445776.
Der volle Inhalt der QuelleKang, Changsung. „Model testing for causal models“. [Ames, Iowa : Iowa State University], 2008.
Den vollen Inhalt der Quelle findenCoskun, Sarp Arda. „PATHCASE-SB MODEL SIMULATION AND MODEL COMPOSITION TOOLS FOR SYSTEMS BIOLOGY MODELS“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1328556115.
Der volle Inhalt der QuelleKotsalis, Georgios. „Model reduction for Hidden Markov models“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38255.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 57-60).
The contribution of this thesis is the development of tractable computational methods for reducing the complexity of two classes of dynamical systems, finite alphabet Hidden Markov Models and Jump Linear Systems with finite parameter space. The reduction algorithms employ convex optimization and numerical linear algebra tools and do not pose any structural requirements on the systems at hand. In the Jump Linear Systems case, a distance metric based on randomization of the parametric input is introduced. The main point of the reduction algorithm lies in the formulation of two dissipation inequalities, which in conjunction with a suitably defined storage function enable the derivation of low complexity models, whose fidelity is controlled by a guaranteed upper bound on the stochastic L2 gain of the approximation error. The developed reduction procedure can be interpreted as an extension of the balanced truncation method to the broader class of Jump Linear Systems. In the Hidden Markov Model case, Hidden Markov Models are identified with appropriate Jump Linear Systems that satisfy certain constraints on the coefficients of the linear transformation. This correspondence enables the development of a two step reduction procedure.
(cont.) In the first step, the image of the high dimensional Hidden Markov Model in the space of Jump Linear Systems is simplified by means of the aforementioned balanced truncation method. Subsequently, in the second step, the constraints that reflect the Hidden Markov Model structure are imposed by solving a low dimensional non convex optimization problem. Numerical simulation results provide evidence that the proposed algorithm computes accurate reduced order Hidden Markov Models, while achieving a compression of the state space by orders of magnitude.
by Georgios Kotsalis.
Ph.D.
Papacchini, Fabio. „Minimal model reasoning for modal logic“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/minimal-model-reasoning-for-modal-logic(dbfeb158-f719-4640-9cc9-92abd26bd83e).html.
Der volle Inhalt der QuellePommellet, Adrien. „On model-checking pushdown systems models“. Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC207/document.
Der volle Inhalt der QuelleIn this thesis, we propose different model-checking techniques for pushdown system models. Pushdown systems (PDSs) are indeed known to be a natural model for sequential programs, as they feature an unbounded stack that can simulate the assembly stack of an actual program. Our first contribution consists in model-checking the logic HyperLTL that adds existential and universal quantifiers on path variables to LTL against pushdown systems (PDSs). The model-checking problem of HyperLTL has been shown to be decidable for finite state systems. We prove that this result does not hold for pushdown systems nor for the subclass of visibly pushdown systems. Therefore, we introduce approximation algorithms for the model-checking problem, and show how these can be used to check security policies. In the second part of this thesis, as pushdown systems can fail to accurately represent the way an assembly stack actually operates, we introduce pushdown systems with an upper stack (UPDSs), a model where symbols popped from the stack are not destroyed but instead remain just above its top, and may be overwritten by later push rules. We prove that the sets of successors post* and predecessors pre* of a regular set of configurations of such a system are not always regular, but that post* is context-sensitive, hence, we can decide whether a single configuration is forward reachable or not. We then present methods to overapproximate post* and under-approximate pre*. Finally, we show how these approximations can be used to detect stack overflows and stack pointer manipulations with malicious intent. Finally, in order to analyse multi-threaded programs, we introduce in this thesis a model called synchronized dynamic pushdown networks (SDPNs) that can be seen as a network of pushdown processes executing synchronized transitions, spawning new pushdown processes, and performing internal pushdown actions. The reachability problem for this model is obviously undecidable. Therefore, we compute an abstraction of the execution paths between two regular sets of configurations. We then apply this abstraction framework to a iterative abstraction refinement scheme
Bartošík, Tomáš. „Metody simulace dodávky výkonu z větrných elektráren“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217592.
Der volle Inhalt der QuelleMakarov, Daniil. „Business Model Innovations“. Master's thesis, Vysoká škola ekonomická v Praze, 2012. http://www.nusl.cz/ntk/nusl-162595.
Der volle Inhalt der QuelleMartin, Jeffrey Harold. „Evaluating models for Bible teaching at a residential summer camp an expository model, a reenactment model, and an experiential model /“. Online full text .pdf document, available to Fuller patrons only, 2003. http://www.tren.com.
Der volle Inhalt der QuelleBücher zum Thema "Model"
Abadžić, Miloš. Prirodni model prirode NMN model: Uspostavljanje osnova modela. Beograd: Izdavačko-grafičko preduzeće "Prometej", 2013.
Den vollen Inhalt der Quelle findenMcMasters, Alan W. Wholesale provisioning models: Model evaluation. Monterey, California: Naval Postgraduate School, 1986.
Den vollen Inhalt der Quelle findenMansager, Bard K. Model test model. Monterey, Calif: Naval Postgraduate School, 1994.
Den vollen Inhalt der Quelle findenArmstrong, T. W. Trapped radiation model uncertainties: Model, data and model, model comparisons. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 2000.
Den vollen Inhalt der Quelle finden1935-, Gerkan Meinhard von, und Von Gerkan, Marg und Partner., Hrsg. Idea and model =: Idee und Modell : 30 years of architectural models. Berlin: Ernst & Sohn, 1994.
Den vollen Inhalt der Quelle findenEmka, Moammar. In bed with model$: Top secret model face off! : sisi gelap model sinetron, model catwalk, model iklan, model escort & foto model. Jakarta: GagasMedia, 2006.
Den vollen Inhalt der Quelle findenHansen, Peter Reinhard. Model confidence sets for forecasting models. [Atlanta, Ga.]: Federal Reserve Bank of Atlanta, 2005.
Den vollen Inhalt der Quelle findenMoser, Barry Kurt. Linear models: A mean model approach. San Diego: Academic Press, 1996.
Den vollen Inhalt der Quelle findenBorowiak, Dale S. Model discrimination for nonlinear regression models. New York: M. Dekker, 1989.
Den vollen Inhalt der Quelle findenKirby, Anthony J. From enzyme models to model enzymes. Cambridge: Royal Society of Chemistry, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Model"
Smoryński, C. „Modal Model Theory“. In Self-Reference and Modal Logic, 87–132. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8601-8_3.
Der volle Inhalt der QuelleBadiru, Adedeji B. „Waterfall model, V-model, spiral model, and other SE models“. In Systems Engineering Models, 129–38. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &: CRC Press, 2019. http://dx.doi.org/10.1201/b22519-7.
Der volle Inhalt der QuellePardo, Scott. „Models, Models Everywhere…Model Selection“. In Statistical Analysis of Empirical Data, 121–60. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43328-4_11.
Der volle Inhalt der QuelleXu, Yiming, und Michael Norrish. „Mechanised Modal Model Theory“. In Automated Reasoning, 518–33. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51074-9_30.
Der volle Inhalt der QuelleBézivin, Jean, Fabian Büttner, Martin Gogolla, Frederic Jouault, Ivan Kurtev und Arne Lindow. „Model Transformations? Transformation Models!“ In Model Driven Engineering Languages and Systems, 440–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11880240_31.
Der volle Inhalt der QuelleScravaglieri, Pierangelo Marco. „The model of models“. In Liquid Architecture, 25–32. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003349808-3.
Der volle Inhalt der QuelleFischer, Joachim, Birger Møller-Pedersen, Andreas Prinz und Bernhard Thalheim. „Models Versus Model Descriptions“. In Modelling to Program, 67–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72696-6_3.
Der volle Inhalt der QuelleHalfar, Peter. „Models and Model Selection“. In Stresses in glaciers, 71–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-66024-9_9.
Der volle Inhalt der QuelleKelsen, Pierre, Qin Ma und Christian Glodt. „Models within Models: Taming Model Complexity Using the Sub-model Lattice“. In Fundamental Approaches to Software Engineering, 171–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19811-3_13.
Der volle Inhalt der QuelleHovey, Mark. „Model categories“. In Model Categories, 1–26. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/063/01.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Model"
Bruneliere, Hugo, Florent Marchand de Kerchove, Gwendal Daniel und Jordi Cabot. „Towards Scalable Model Views on Heterogeneous Model Resources“. In MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3239372.3239408.
Der volle Inhalt der QuelleStephan, Matthew, und James R. Cordy. „Identification of Simulink model antipattern instances using model clone detection“. In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 2015. http://dx.doi.org/10.1109/models.2015.7338258.
Der volle Inhalt der QuelleCuadrado, Jesus Sanchez, Esther Guerra, Juan de Lara, Robert Clariso und Jordi Cabot. „Translating Target to Source Constraints in Model-to-Model Transformations“. In 2017 ACM/IEEE 20th International Conference on Model-Driven Engineering Languages and Systems (MODELS). IEEE, 2017. http://dx.doi.org/10.1109/models.2017.12.
Der volle Inhalt der QuelleMartínez-Lasaca, Francisco, Pablo Díez, Esther Guerra und Juan de Lara. „Model Sensemaking Strategies: Exploiting Meta-Model Patterns to Understand Large Models“. In 2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 2023. http://dx.doi.org/10.1109/models58315.2023.00023.
Der volle Inhalt der QuelleKlare, Heiko. „Multi-model consistency preservation“. In MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3270112.3275335.
Der volle Inhalt der Quellede Lara, Juan, Esther Guerra, Marsha Chechik und Rick Salay. „Model Transformation Product Lines“. In MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3239372.3239377.
Der volle Inhalt der QuelleJolak, Rodi, Truong Ho-Quang, Michel R. V. Chaudron und Ramon R. H. Schiffelers. „Model-Based Software Engineering“. In MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3239372.3239404.
Der volle Inhalt der QuelleClarisó, Robert, und Jordi Cabot. „Model-Driven Prompt Engineering“. In 2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 2023. http://dx.doi.org/10.1109/models58315.2023.00020.
Der volle Inhalt der QuelleKolovos, Dimitris, Alfonso de la Vega und Justin Cooper. „Efficient generation of graphical model views via lazy model-to-text transformation“. In MODELS '20: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3365438.3410943.
Der volle Inhalt der QuelleBoudjemila, Chahrazed, Fabien Dagnat und Salvador Martínez. „Towards Evolving Secured Multi-Model Systems with Model Federation“. In 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE, 2023. http://dx.doi.org/10.1109/models-c59198.2023.00148.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Model"
Canfield, Jesse M. Modal model: a material interface stability model. Office of Scientific and Technical Information (OSTI), Oktober 2016. http://dx.doi.org/10.2172/1330636.
Der volle Inhalt der QuelleFeng, Thomas H., und Edward A. Lee. Scalable Models Using Model Transformation. Fort Belvoir, VA: Defense Technical Information Center, Juli 2008. http://dx.doi.org/10.21236/ada518855.
Der volle Inhalt der QuelleMallon, Lawrence G. Multi-Modal Terminal Model Documentation. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada460376.
Der volle Inhalt der QuelleOhyabu, N. Phenomenological model for H-mode. Office of Scientific and Technical Information (OSTI), August 1985. http://dx.doi.org/10.2172/5218387.
Der volle Inhalt der QuelleGeoffrion, Andrew M. Reusing Structured Models via Model Integration. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada204652.
Der volle Inhalt der QuelleByler, Eleanor, Elise Bishoff, Charles Godfrey und Myles McKay. Gumby: Quantifying multi-modal model resiliency. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2331295.
Der volle Inhalt der QuelleSinger, C. E., E. S. Ghanem, G. Bateman und D. P. Stotler. Multiple mode model of tokamak transport. Office of Scientific and Technical Information (OSTI), Juli 1989. http://dx.doi.org/10.2172/6054425.
Der volle Inhalt der QuelleMadigan, David, und Adrian E. Raftery. Model Selection and Accounting for Model Uncertainty in Graphical Models Using OCCAM's Window. Fort Belvoir, VA: Defense Technical Information Center, Juli 1991. http://dx.doi.org/10.21236/ada241408.
Der volle Inhalt der QuelleBarhak, Jacob. Supplemental Information: The Reference Model is a Multi-Scale Ensemble Model of COVID-19. Outbreak, Mai 2021. http://dx.doi.org/10.34235/b7eaa32b-1a6b-444f-9848-76f83f5a733c.
Der volle Inhalt der QuelleWestwood, Evan K. Broadband, Range-Dependent Normal Mode Model Development. Fort Belvoir, VA: Defense Technical Information Center, Juli 2002. http://dx.doi.org/10.21236/ada404172.
Der volle Inhalt der Quelle