Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mmodelling and numerical simulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mmodelling and numerical simulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mmodelling and numerical simulation"
JACIMOVIC, Nenad, Takashi HOSODA, Kiyoshi KISHIDA und Marko IVETIC. „NUMERICAL SIMULATION OF CONTAMINANT NUMERICAL SIMULATION OF CONTAMINANT“. PROCEEDINGS OF HYDRAULIC ENGINEERING 51 (2007): 13–18. http://dx.doi.org/10.2208/prohe.51.13.
Der volle Inhalt der QuelleMIYAUCHI, Toshio. „Numerical Simulation of Combustion“. Tetsu-to-Hagane 80, Nr. 12 (1994): 871–77. http://dx.doi.org/10.2355/tetsutohagane1955.80.12_871.
Der volle Inhalt der QuelleLima Júnior, Édio Pereira, Wendel Rodrigues Miranda, André Luiz Tenório Rezende und Arnaldo Ferreira. „Numerical Simulation of Impact“. International Journal of Innovative Research in Engineering & Management 5, Nr. 1 (Januar 2018): 24–29. http://dx.doi.org/10.21276/ijirem.2018.5.1.6.
Der volle Inhalt der QuelleSheshenin, S. V., und S. A. Margaryan. „TIRE 3D NUMERICAL SIMULATION“. International Journal for Computational Civil and Structural Engineering 1, Nr. 1 (2005): 33–42. http://dx.doi.org/10.1615/intjcompcivstructeng.v1.i1.40.
Der volle Inhalt der QuelleSHUTO, Nobuo. „Numerical simulation of Tsunamis.“ Doboku Gakkai Ronbunshu, Nr. 411 (1989): 13–23. http://dx.doi.org/10.2208/jscej.1989.411_13.
Der volle Inhalt der QuelleKanak, Katharine M., Jerry M. Straka und David M. Schultz. „Numerical Simulation of Mammatus“. Journal of the Atmospheric Sciences 65, Nr. 5 (01.05.2008): 1606–21. http://dx.doi.org/10.1175/2007jas2469.1.
Der volle Inhalt der QuelleIsbăşoiu, Eliza Consuela. „Numerical Modeling and Simulation“. Advanced Science Letters 19, Nr. 1 (01.01.2013): 166–69. http://dx.doi.org/10.1166/asl.2013.4663.
Der volle Inhalt der QuelleUEMATSU, Takahiko. „Numerical simulation of snowdrift.“ Journal of the Japanese Society of Snow and Ice 54, Nr. 3 (1992): 287–89. http://dx.doi.org/10.5331/seppyo.54.287.
Der volle Inhalt der QuelleJoly, Patrick, Leïla Rhaouti und Antoine Chaigne. „Numerical simulation of timpani“. Journal of the Acoustical Society of America 105, Nr. 2 (Februar 1999): 1125. http://dx.doi.org/10.1121/1.425250.
Der volle Inhalt der QuelleDupuy, Thomas, und Chainarong Srikunwong. „Resistance Welding Numerical Simulation“. Revue Européenne des Éléments Finis 13, Nr. 3-4 (Januar 2004): 313–41. http://dx.doi.org/10.3166/reef.13.313-341.
Der volle Inhalt der QuelleDissertationen zum Thema "Mmodelling and numerical simulation"
Pannetier, Valentin. „Simulations numériques standardisées de dispositifs de stimulation électrique cardiaque“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0352.
Der volle Inhalt der QuelleCardiovascular diseases are the world’s leading cause of death, responsible for around 32% of all deaths in 2019, according to the World Health Organization (WHO). Faced with these pathologies, medical research is making constant progress to develop ever more effective treatments and devices. Among these innovations, implantable pacemakers play a crucial role in the treatment of cardiac rhythm disorders, intervening directly on the heart in the event of malfunction. Despite, despite their importance, the development of these technologies remains slow and costly. It often takes almost a decade from early prototyping to market launch, delaying their impact on human lives. This thesis is part of the European collaborative project SimCardioTest (EU H2020), which aims to accelerate the adoption of numerical tools for the certification of drugs and medical devices, such as implantable pacemakers. One of the main goals of the project is to integrate numerical simulations in the form of in silico clinical trials on a standardized web plateform in oirder to speed up thecertification process. During of this thesis, several mathematical models were developed and analyzed, ranging from generic three-dimensional models to simplified models with no spatial dimension. All these models include a electrical circuit inspired by a commercial pacemaker, contact models representing the ionic layers on electrode surfaces as equivalent electrical circuits, and cardiac tissue models with or without spatial propagation of cardiac action potentials. The credibility of these models is assessed through comparisons with animal experiments conducted during the thesis, with the aim of demonstrating their ability to reproduce realistic cardiac stimulations. These comparisons are based mainly on the voltages measured by pacemakers and on the study of threshold curves, also known as Lapicque curves. These curves, widely used clinically to adjust pacemakers, establish the relationship between stimulation duration and amplitude required to induce an effective cardiac contraction. In particular, they enable pacemaker settings to be optimized through individual customization, thereby minimizing energy consumption, maximizing device life, and therefore improving patient’s life quality. The adoption of simplified dimensionless models is an valuable strategic step in this thesis. Unlike spatial models, which are very costly to solve numerically, these models are simpler to solve and have enabled several parametric studies to be carried out, in particular to perform calibration using experimental data. Additional sensitivity studies, both local and global, were also carried out to analyze the influence and relevance of the parameters in the developed models
Amphlett, Jonathan Lee. „Numerical simulation of microelectrodes“. Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341628.
Der volle Inhalt der QuelleEvensberget, Dag Frohde. „Numerical Simulation of Nonholonomic Dynamics“. Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9484.
Der volle Inhalt der QuelleWe study the numerical integration of nonholonomic problems. The problems are formulated using Lagrangian and Hamiltonian mechanics. We review briefly the theoretical concepts used in geometric mechanics. We reconstruct two nonholonomic variational integrators from the monograph of Monforte. We also construct two one-step integrators based on a combination of the continuous Legendre transform and the discrete Legendre transform from an article by Marsden and West. Inintially these integrators display promising behavior, but they turn out to be unstable. The variational integrators are compared with a classical Runge-Kutta method. We compare the methods on three nonholonomic systems: The nonholonomic particle from the monograph of Monforte, the nonholonomic system of particles from an article by McLachlan and Perlmutter, and a variation of the Chaplygin sleigh from Bloch.
Uddholm, Per. „Numerical Simulation of Flame Propagation“. Thesis, Uppsala University, Department of Information Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-98325.
Der volle Inhalt der QuelleThe effects of the temperature and length, of the preheat zone, on the deflagration to detonation transition are investigated through numerical simulation. The Navier-Stokes equations, with a reaction term, are solved in one dimension. The time integration is a one-dimensional adaptation of an existing two-dimensional finite volume method code. An iterative scheme, based on an overlap integral, is developed for the determination of the deflagration to detonation transition. The code is tested in a number of cases, where the analytical solution (to the Euler equations) is known. The location of the deflagration to detonation transition is displayed graphically through the preheat zone temperature as a function of the fuel mixture temperature, for fixed exhaust gas temperature and with the preheat zone length as a parameter. The evolution of the deflagration to detonation transition is investigated for an initial state well within the regime where the deflagration to detonation transition occurs. Graphs displaying the temporal evolution of pressure, temperature, reaction rate, and fuel mass fraction are presented. Finally, a method for estimating the flame velocity during the deflagration and detonation phases, as well as the flame acceleration during the intermediate phase, is developed.
Karaismail, Ertan. „Numerical Simulation Of Radiating Flows“. Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606452/index.pdf.
Der volle Inhalt der QuelleRiljak, Stanislav. „Numerical simulation of shape rolling“. Licentiate thesis, Stockholm, 2006. http://www.diva-portal.org/kth/theses/abstract.xsql?dbid=3963.
Der volle Inhalt der QuelleAlhajraf, Salem. „Numerical simulation of drifting sand“. Thesis, Cranfield University, 2000. http://hdl.handle.net/1826/3502.
Der volle Inhalt der QuelleMatallah, H. „Numerical simulation of viscoelastic flows“. Thesis, Swansea University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638026.
Der volle Inhalt der QuelleJiang, Long. „Numerical simulation of urban flooding“. Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504497.
Der volle Inhalt der QuelleKovacs, Endre. „Numerical simulation of magnetic nanoparticles“. Thesis, Loughborough University, 2005. https://dspace.lboro.ac.uk/2134/7742.
Der volle Inhalt der QuelleBücher zum Thema "Mmodelling and numerical simulation"
Choobbasti, A. Janalizadeh. Numerical simulation of liquefaction. Manchester: UMIST, 1997.
Den vollen Inhalt der Quelle findenHirschel, Ernst Heinrich, Hrsg. Numerical Flow Simulation II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44567-8.
Der volle Inhalt der QuelleHirschel, Ernst Heinrich, Hrsg. Numerical Flow Simulation III. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45693-3.
Der volle Inhalt der QuelleHan, Xu, und Jie Liu. Numerical Simulation-based Design. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-3090-1.
Der volle Inhalt der QuelleBeer, Gernot, Hrsg. Numerical Simulation in Tunnelling. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6099-2.
Der volle Inhalt der QuelleUrban, Karsten. Wavelets in Numerical Simulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56002-6.
Der volle Inhalt der QuelleHirschel, Ernst Heinrich, Hrsg. Numerical Flow Simulation I. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-540-44437-4.
Der volle Inhalt der QuelleDnestrovskii, Yuri N., und Dimitri P. Kostomarov. Numerical Simulation of Plasmas. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82592-7.
Der volle Inhalt der QuelleHirschel, Ernst Heinrich, Hrsg. Numerical Flow Simulation I. Wiesbaden: Vieweg+Teubner Verlag, 1998. http://dx.doi.org/10.1007/978-3-663-10916-7.
Der volle Inhalt der QuelleP, Colombo Simone, und Rizzo Christian L, Hrsg. Numerical simulation research progress. New York: Nova Science Publishers, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Mmodelling and numerical simulation"
Li, Tatsien, Yongji Tan, Zhijie Cai, Wei Chen und Jingnong Wang. „Numerical Simulation“. In SpringerBriefs in Mathematics, 47–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41425-1_5.
Der volle Inhalt der QuelleBaniotopoulos, C. C. „Numerical Simulation“. In Semi-Rigid Joints in Structural Steelwork, 289–347. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-2478-9_5.
Der volle Inhalt der QuelleGross, Dietmar, Werner Hauger, Jörg Schröder, Wolfgang A. Wall und Sanjay Govindjee. „Numerical Simulation“. In Engineering Mechanics 3, 317–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14019-8_7.
Der volle Inhalt der QuelleEnns, Richard H., und George C. McGuire. „Numerical Simulation“. In Nonlinear Physics with Mathematica for Scientists and Engineers, 451–90. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0211-0_11.
Der volle Inhalt der QuelleAntipov, Sergey A. „Numerical Simulation“. In Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets, 51–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02408-6_4.
Der volle Inhalt der QuelleGross, Dietmar, Werner Hauger, Jörg Schröder, Wolfgang A. Wall und Sanjay Govindjee. „Numerical Simulation“. In Engineering Mechanics 3, 323–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53712-7_7.
Der volle Inhalt der QuelleEnns, Richard H., und George McGuire. „Numerical Simulation“. In Nonlinear Physics with Maple for Scientists and Engineers, 317–44. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4684-0032-8_10.
Der volle Inhalt der QuelleAzevedo, António C., Fernando A. N. Silva, João M. P. Q. Delgado und Isaque Lira. „Numerical Simulation“. In Concrete Structures Deteriorated by Delayed Ettringite Formation and Alkali-Silica Reactions, 45–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12267-5_5.
Der volle Inhalt der QuelleAkhavan-Safar, Alireza, Eduardo A. S. Marques, Ricardo J. C. Carbas und Lucas F. M. da Silva. „Numerical Simulation“. In Cohesive Zone Modelling for Fatigue Life Analysis of Adhesive Joints, 67–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93142-1_4.
Der volle Inhalt der QuelleEnns, Richard H., und George C. McGuire. „Numerical Simulation“. In Nonlinear Physics with Maple for Scientists and Engineers, 437–72. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1322-2_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mmodelling and numerical simulation"
Cenedese, Antonio, P. Monti und M. Sallusti. „PIV: a numerical simulation“. In Laser Anemometry: Advances and Applications--Fifth International Conference, herausgegeben von J. M. Bessem, R. Booij, H. W. H. E. Godefroy, P. J. de Groot, K. K. Prasad, F. F. M. de Mul und E. J. Nijhof. SPIE, 1993. http://dx.doi.org/10.1117/12.150542.
Der volle Inhalt der Quelle„Theoretical investigation, numerical simulation“. In 2008 4th International Conference on Ultrawideband and Ultrashort Impulse Signals. IEEE, 2008. http://dx.doi.org/10.1109/uwbus.2008.4669401.
Der volle Inhalt der Quelle„Theoretical investigation, numerical simulation“. In 2016 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS). IEEE, 2016. http://dx.doi.org/10.1109/uwbusis.2016.7724150.
Der volle Inhalt der QuelleFranke, H. G., A. Olmes, E. Bansch, H. Lubatschowski, G. Dziuk und W. Ertmer. „Numerical Simulation of Infrared-Photoablation“. In Proceedings of European Meeting on Lasers and Electro-Optics. IEEE, 1996. http://dx.doi.org/10.1109/cleoe.1996.562500.
Der volle Inhalt der QuelleSalcudean, Martha Eva, und Z. Abdullah. „NUMERICAL SIMULATION OF CASTING PROCESSES“. In International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.3660.
Der volle Inhalt der QuelleGong Wei, Li Ruo, Yan Ningning und Zhao Weibo. „Numerical simulation of bioluminescence tomography“. In 2008 Chinese Control Conference (CCC). IEEE, 2008. http://dx.doi.org/10.1109/chicc.2008.4605159.
Der volle Inhalt der QuelleHashim, Uda, P. N. A. Diyana und Tijjani Adam. „Numerical simulation of Microfluidic devices“. In 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2012. http://dx.doi.org/10.1109/smelec.2012.6417083.
Der volle Inhalt der QuelleMahajerin, Enayat, und Gary J. Burgess. „Numerical Simulation of Truck Transportation“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62358.
Der volle Inhalt der QuelleTech, Tomás Wayhs, Ignacio Iturrioz und Agenor Dias de Meira Júnior. „Numerical Simulation of Bus Rollover“. In SAE Brasil 2007 Congress and Exhibit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-2718.
Der volle Inhalt der QuelleBabu, D. K., A. S. Odeh, A. J. Al-Khalifa und R. C. McCann. „Numerical Simulation of Horizontal Wells“. In Middle East Oil Show. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/21425-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mmodelling and numerical simulation"
Wu, Yanlin, und R. B. White. Numerical simulation of Bootstrap Current. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/10160602.
Der volle Inhalt der QuelleWu, Yanlin, und R. B. White. Numerical simulation of Bootstrap Current. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/6484029.
Der volle Inhalt der QuelleZeda, Jason D. Numerical Simulation of Evaporating Capillary Jets. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada367314.
Der volle Inhalt der QuelleAgarwal, Ramesh K., und Ramesh Balakrishnan. Numerical Simulation of BGK-Burnett Equations. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada326201.
Der volle Inhalt der QuelleCoffey, K. A., und P. A. Gremaud. Numerical Simulation of Aerated Powder Consolidation. Fort Belvoir, VA: Defense Technical Information Center, Februar 2001. http://dx.doi.org/10.21236/ada392913.
Der volle Inhalt der QuelleFeng, Zhigang, Jianjun Miao, Adrian Peralta-Alva und Manuel S. Santos. Numerical Simulation of Nonoptimal Dynamic Equilibrium Models. Federal Reserve Bank of St. Louis, 2009. http://dx.doi.org/10.20955/wp.2009.018.
Der volle Inhalt der QuelleH. N. Najm. MPP Direct Numerical Simulation of Diesel Autoignition. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/791301.
Der volle Inhalt der QuelleUeyoshi, Kyozo, J. O. Roads und J. Alpert. A numerical simulation of the Catalina Eddy. Office of Scientific and Technical Information (OSTI), Dezember 1991. http://dx.doi.org/10.2172/10194723.
Der volle Inhalt der QuelleOdstroil, Dusan. Numerical Simulation of Heliospheric Transients Approaching Geospace. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2009. http://dx.doi.org/10.21236/ada530898.
Der volle Inhalt der QuellePena, Jeremy R. Numerical Simulation Of Cratering Effects In Adobe. Fort Belvoir, VA: Defense Technical Information Center, Juli 2013. http://dx.doi.org/10.21236/ad1003791.
Der volle Inhalt der Quelle