Zeitschriftenartikel zum Thema „ML fairness“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "ML fairness" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Weinberg, Lindsay. „Rethinking Fairness: An Interdisciplinary Survey of Critiques of Hegemonic ML Fairness Approaches“. Journal of Artificial Intelligence Research 74 (06.05.2022): 75–109. http://dx.doi.org/10.1613/jair.1.13196.
Der volle Inhalt der QuelleBærøe, Kristine, Torbjørn Gundersen, Edmund Henden und Kjetil Rommetveit. „Can medical algorithms be fair? Three ethical quandaries and one dilemma“. BMJ Health & Care Informatics 29, Nr. 1 (April 2022): e100445. http://dx.doi.org/10.1136/bmjhci-2021-100445.
Der volle Inhalt der QuelleYanjun Li, Yanjun Li, Huan Huang Yanjun Li, Qiang Geng Huan Huang, Xinwei Guo Qiang Geng und Yuyu Yuan Xinwei Guo. „Fairness Measures of Machine Learning Models in Judicial Penalty Prediction“. 網際網路技術學刊 23, Nr. 5 (September 2022): 1109–16. http://dx.doi.org/10.53106/160792642022092305019.
Der volle Inhalt der QuelleGhosh, Bishwamittra, Debabrota Basu und Kuldeep S. Meel. „Algorithmic Fairness Verification with Graphical Models“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 9 (28.06.2022): 9539–48. http://dx.doi.org/10.1609/aaai.v36i9.21187.
Der volle Inhalt der QuelleKuzucu, Selim, Jiaee Cheong, Hatice Gunes und Sinan Kalkan. „Uncertainty as a Fairness Measure“. Journal of Artificial Intelligence Research 81 (13.10.2024): 307–35. http://dx.doi.org/10.1613/jair.1.16041.
Der volle Inhalt der QuelleWeerts, Hilde, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger, Edward Bergman, Noor Awad, Joaquin Vanschoren, Mykola Pechenizkiy, Bernd Bischl und Frank Hutter. „Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML“. Journal of Artificial Intelligence Research 79 (17.02.2024): 639–77. http://dx.doi.org/10.1613/jair.1.14747.
Der volle Inhalt der QuelleMakhlouf, Karima, Sami Zhioua und Catuscia Palamidessi. „On the Applicability of Machine Learning Fairness Notions“. ACM SIGKDD Explorations Newsletter 23, Nr. 1 (26.05.2021): 14–23. http://dx.doi.org/10.1145/3468507.3468511.
Der volle Inhalt der QuelleSingh, Vivek K., und Kailash Joshi. „Integrating Fairness in Machine Learning Development Life Cycle: Fair CRISP-DM“. e-Service Journal 14, Nr. 2 (Dezember 2022): 1–24. http://dx.doi.org/10.2979/esj.2022.a886946.
Der volle Inhalt der QuelleZhou, Zijian, Xinyi Xu, Rachael Hwee Ling Sim, Chuan Sheng Foo und Bryan Kian Hsiang Low. „Probably Approximate Shapley Fairness with Applications in Machine Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 5 (26.06.2023): 5910–18. http://dx.doi.org/10.1609/aaai.v37i5.25732.
Der volle Inhalt der QuelleSreerama, Jeevan, und Gowrisankar Krishnamoorthy. „Ethical Considerations in AI Addressing Bias and Fairness in Machine Learning Models“. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 1, Nr. 1 (14.09.2022): 130–38. http://dx.doi.org/10.60087/jklst.vol1.n1.p138.
Der volle Inhalt der QuelleBlow, Christina Hastings, Lijun Qian, Camille Gibson, Pamela Obiomon und Xishuang Dong. „Comprehensive Validation on Reweighting Samples for Bias Mitigation via AIF360“. Applied Sciences 14, Nr. 9 (30.04.2024): 3826. http://dx.doi.org/10.3390/app14093826.
Der volle Inhalt der QuelleTeodorescu, Mike, Lily Morse, Yazeed Awwad und Gerald Kane. „Failures of Fairness in Automation Require a Deeper Understanding of Human-ML Augmentation“. MIS Quarterly 45, Nr. 3 (01.09.2021): 1483–500. http://dx.doi.org/10.25300/misq/2021/16535.
Der volle Inhalt der QuellePessach, Dana, und Erez Shmueli. „A Review on Fairness in Machine Learning“. ACM Computing Surveys 55, Nr. 3 (30.04.2023): 1–44. http://dx.doi.org/10.1145/3494672.
Der volle Inhalt der QuelleGhosh, Bishwamittra, Debabrota Basu und Kuldeep S. Meel. „Justicia: A Stochastic SAT Approach to Formally Verify Fairness“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 9 (18.05.2021): 7554–63. http://dx.doi.org/10.1609/aaai.v35i9.16925.
Der volle Inhalt der QuelleSikstrom, Laura, Marta M. Maslej, Katrina Hui, Zoe Findlay, Daniel Z. Buchman und Sean L. Hill. „Conceptualising fairness: three pillars for medical algorithms and health equity“. BMJ Health & Care Informatics 29, Nr. 1 (Januar 2022): e100459. http://dx.doi.org/10.1136/bmjhci-2021-100459.
Der volle Inhalt der QuelleDrira, Mohamed, Sana Ben Hassine, Michael Zhang und Steven Smith. „Machine Learning Methods in Student Mental Health Research: An Ethics-Centered Systematic Literature Review“. Applied Sciences 14, Nr. 24 (16.12.2024): 11738. https://doi.org/10.3390/app142411738.
Der volle Inhalt der QuelleKumbo, Lazaro Inon, Victor Simon Nkwera und Rodrick Frank Mero. „Evaluating the Ethical Practices in Developing AI and Ml Systems in Tanzania“. ABUAD Journal of Engineering Research and Development (AJERD) 7, Nr. 2 (September 2024): 340–51. http://dx.doi.org/10.53982/ajerd.2024.0702.33-j.
Der volle Inhalt der QuelleEzzeldin, Yahya H., Shen Yan, Chaoyang He, Emilio Ferrara und A. Salman Avestimehr. „FairFed: Enabling Group Fairness in Federated Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 6 (26.06.2023): 7494–502. http://dx.doi.org/10.1609/aaai.v37i6.25911.
Der volle Inhalt der QuelleFessenko, Dessislava. „Ethical Requirements for Achieving Fairness in Radiology Machine Learning: An Intersectionality and Social Embeddedness Approach“. Journal of Health Ethics 20, Nr. 1 (2024): 37–49. http://dx.doi.org/10.18785/jhe.2001.04.
Der volle Inhalt der QuelleCheng, Lu. „Demystifying Algorithmic Fairness in an Uncertain World“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 20 (24.03.2024): 22662. http://dx.doi.org/10.1609/aaai.v38i20.30278.
Der volle Inhalt der QuelleArslan, Ayse. „Mitigation Techniques to Overcome Data Harm in Model Building for ML“. International Journal of Artificial Intelligence & Applications 13, Nr. 1 (31.01.2022): 73–82. http://dx.doi.org/10.5121/ijaia.2022.13105.
Der volle Inhalt der QuelleVartak, Manasi. „From ML models to intelligent applications“. Proceedings of the VLDB Endowment 14, Nr. 13 (September 2021): 3419. http://dx.doi.org/10.14778/3484224.3484240.
Der volle Inhalt der QuelleArjunan, Gopalakrishnan. „Enhancing Data Quality and Integrity in Machine Learning Pipelines: Approaches for Detecting and Mitigating Bias“. International Journal of Scientific Research and Management (IJSRM) 10, Nr. 09 (24.09.2022): 940–45. http://dx.doi.org/10.18535/ijsrm/v10i9.ec04.
Der volle Inhalt der QuelleSingh, Arashdeep, Jashandeep Singh, Ariba Khan und Amar Gupta. „Developing a Novel Fair-Loan Classifier through a Multi-Sensitive Debiasing Pipeline: DualFair“. Machine Learning and Knowledge Extraction 4, Nr. 1 (12.03.2022): 240–53. http://dx.doi.org/10.3390/make4010011.
Der volle Inhalt der QuelleTambari Faith Nuka und Amos Abidemi Ogunola. „AI and machine learning as tools for financial inclusion: challenges and opportunities in credit scoring“. International Journal of Science and Research Archive 13, Nr. 2 (30.11.2024): 1052–67. http://dx.doi.org/10.30574/ijsra.2024.13.2.2258.
Der volle Inhalt der QuelleKeswani, Vijay, und L. Elisa Celis. „Algorithmic Fairness From the Perspective of Legal Anti-discrimination Principles“. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16.10.2024): 724–37. http://dx.doi.org/10.1609/aies.v7i1.31674.
Der volle Inhalt der QuelleDetassis, Fabrizio, Michele Lombardi und Michela Milano. „Teaching the Old Dog New Tricks: Supervised Learning with Constraints“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 5 (18.05.2021): 3742–49. http://dx.doi.org/10.1609/aaai.v35i5.16491.
Der volle Inhalt der QuelleSunday Adeola Oladosu, Christian Chukwuemeka Ike, Peter Adeyemo Adepoju, Adeoye Idowu Afolabi, Adebimpe Bolatito Ige und Olukunle Oladipupo Amoo. „Frameworks for ethical data governance in machine learning: Privacy, fairness, and business optimization“. Magna Scientia Advanced Research and Reviews 7, Nr. 2 (30.04.2023): 096–106. https://doi.org/10.30574/msarr.2023.7.2.0043.
Der volle Inhalt der QuelleCzarnowska, Paula, Yogarshi Vyas und Kashif Shah. „Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics“. Transactions of the Association for Computational Linguistics 9 (2021): 1249–67. http://dx.doi.org/10.1162/tacl_a_00425.
Der volle Inhalt der QuellePark, Sojung, Eunhye Ahn, Tae-Hyuk Ahn, SangNam Ahn, Soobin Park, Eunsun Kwon, Seoyeon Ahn und Yuanyuan Yang. „ROLE OF MACHINE LEARNING (ML) IN AGING IN PLACE RESEARCH: A SCOPING REVIEW“. Innovation in Aging 8, Supplement_1 (Dezember 2024): 1215. https://doi.org/10.1093/geroni/igae098.3890.
Der volle Inhalt der QuelleShah, Kanan, Yassamin Neshatvar, Elaine Shum und Madhur Nayan. „Optimizing the fairness of survival prediction models for racial/ethnic subgroups: A study on predicting post-operative survival in stage IA and IB non-small cell lung cancer.“ JCO Oncology Practice 20, Nr. 10_suppl (Oktober 2024): 380. http://dx.doi.org/10.1200/op.2024.20.10_suppl.380.
Der volle Inhalt der QuelleIslam, Rashidul, Huiyuan Chen und Yiwei Cai. „Fairness without Demographics through Shared Latent Space-Based Debiasing“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 11 (24.03.2024): 12717–25. http://dx.doi.org/10.1609/aaai.v38i11.29167.
Der volle Inhalt der QuelleLamba, Hemank, Kit T. Rodolfa und Rayid Ghani. „An Empirical Comparison of Bias Reduction Methods on Real-World Problems in High-Stakes Policy Settings“. ACM SIGKDD Explorations Newsletter 23, Nr. 1 (26.05.2021): 69–85. http://dx.doi.org/10.1145/3468507.3468518.
Der volle Inhalt der QuelleShook, Jim, Robyn Smith und Alex Antonio. „Transparency and Fairness in Machine Learning Applications“. Symposium Edition - Artificial Intelligence and the Legal Profession 4, Nr. 5 (April 2018): 443–63. http://dx.doi.org/10.37419/jpl.v4.i5.2.
Der volle Inhalt der QuelleDing, Xueying, Rui Xi und Leman Akoglu. „Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors“. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16.10.2024): 384–95. http://dx.doi.org/10.1609/aies.v7i1.31644.
Der volle Inhalt der QuelleGalhotra, Sainyam, Karthikeyan Shanmugam, Prasanna Sattigeri und Kush R. Varshney. „Interventional Fairness with Indirect Knowledge of Unobserved Protected Attributes“. Entropy 23, Nr. 12 (25.11.2021): 1571. http://dx.doi.org/10.3390/e23121571.
Der volle Inhalt der QuelleXiao, Ying, Jie M. Zhang, Yepang Liu, Mohammad Reza Mousavi, Sicen Liu und Dingyuan Xue. „MirrorFair: Fixing Fairness Bugs in Machine Learning Software via Counterfactual Predictions“. Proceedings of the ACM on Software Engineering 1, FSE (12.07.2024): 2121–43. http://dx.doi.org/10.1145/3660801.
Der volle Inhalt der QuelleIgoche, Bern Igoche, Olumuyiwa Matthew, Peter Bednar und Alexander Gegov. „Integrating Structural Causal Model Ontologies with LIME for Fair Machine Learning Explanations in Educational Admissions“. Journal of Computing Theories and Applications 2, Nr. 1 (25.06.2024): 65–85. http://dx.doi.org/10.62411/jcta.10501.
Der volle Inhalt der QuelleVajiac, Catalina, Arun Frey, Joachim Baumann, Abigail Smith, Kasun Amarasinghe, Alice Lai, Kit T. Rodolfa und Rayid Ghani. „Preventing Eviction-Caused Homelessness through ML-Informed Distribution of Rental Assistance“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 20 (24.03.2024): 22393–400. http://dx.doi.org/10.1609/aaai.v38i20.30246.
Der volle Inhalt der QuelleMetevier, Blossom. „Pursuing Social Good: An Overview of Short- and Long-Term Fairness in Classification“. ACM SIGCAS Computers and Society 52, Nr. 2 (September 2023): 6. http://dx.doi.org/10.1145/3656021.3656022.
Der volle Inhalt der QuelleBantilan, Niels. „Themis-ml: A Fairness-Aware Machine Learning Interface for End-To-End Discrimination Discovery and Mitigation“. Journal of Technology in Human Services 36, Nr. 1 (02.01.2018): 15–30. http://dx.doi.org/10.1080/15228835.2017.1416512.
Der volle Inhalt der QuelleElglaly, Yasmine N., und Yudong Liu. „Promoting Machine Learning Fairness Education through Active Learning and Reflective Practices“. ACM SIGCSE Bulletin 55, Nr. 3 (Juli 2023): 4–6. http://dx.doi.org/10.1145/3610585.3610589.
Der volle Inhalt der QuelleSeastedt, Kenneth P., Patrick Schwab, Zach O’Brien, Edith Wakida, Karen Herrera, Portia Grace F. Marcelo, Louis Agha-Mir-Salim et al. „Global healthcare fairness: We should be sharing more, not less, data“. PLOS Digital Health 1, Nr. 10 (06.10.2022): e0000102. http://dx.doi.org/10.1371/journal.pdig.0000102.
Der volle Inhalt der QuelleWang, Mini Han, Ruoyu Zhou, Zhiyuan Lin, Yang Yu, Peijin Zeng, Xiaoxiao Fang, Jie yang et al. „Can Explainable Artificial Intelligence Optimize the Data Quality of Machine Learning Model? Taking Meibomian Gland Dysfunction Detections as a Case Study“. Journal of Physics: Conference Series 2650, Nr. 1 (01.11.2023): 012025. http://dx.doi.org/10.1088/1742-6596/2650/1/012025.
Der volle Inhalt der QuelleRaza, Shaina, Parisa Osivand Pour und Syed Raza Bashir. „Fairness in Machine Learning Meets with Equity in Healthcare“. Proceedings of the AAAI Symposium Series 1, Nr. 1 (03.10.2023): 149–53. http://dx.doi.org/10.1609/aaaiss.v1i1.27493.
Der volle Inhalt der QuelleBegum, Shaik Salma. „JARVIS - Customer Support Chatbot with ML“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 01 (13.01.2024): 1–12. http://dx.doi.org/10.55041/ijsrem28053.
Der volle Inhalt der QuelleTang, Zicheng. „The Role of AI and ML in Transforming Marketing Strategies: Insights from Recent Studies“. Advances in Economics, Management and Political Sciences 108, Nr. 1 (27.09.2024): 132–39. http://dx.doi.org/10.54254/2754-1169/108/20242009.
Der volle Inhalt der QuellePatel, Ekta V., Kirit J. Modi, und Maitri H. Bhavsar. „Employee Performance Evaluation Using Machine Learning“. International Journal of Advances in Engineering and Management 6, Nr. 11 (November 2024): 160–64. https://doi.org/10.35629/5252-0611160164.
Der volle Inhalt der QuelleGoretzko, David, und Laura Sophia Finja Israel. „Pitfalls of Machine Learning-Based Personnel Selection“. Journal of Personnel Psychology 21, Nr. 1 (Januar 2022): 37–47. http://dx.doi.org/10.1027/1866-5888/a000287.
Der volle Inhalt der QuelleMangal, Mudit, und Zachary A. Pardos. „Implementing equitable and intersectionality‐aware ML in education: A practical guide“. British Journal of Educational Technology, 23.05.2024. http://dx.doi.org/10.1111/bjet.13484.
Der volle Inhalt der Quelle