Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Misspecified bounds“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Misspecified bounds" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Misspecified bounds"
Liu, Changyu, Yuling Jiao, Junhui Wang und Jian Huang. „Nonasymptotic Bounds for Adversarial Excess Risk under Misspecified Models“. SIAM Journal on Mathematics of Data Science 6, Nr. 4 (01.10.2024): 847–68. http://dx.doi.org/10.1137/23m1598210.
Der volle Inhalt der QuelleTeichner, Ron, und Ron Meir. „Kalman smoother error bounds in the presence of misspecified measurements“. IFAC-PapersOnLine 56, Nr. 2 (2023): 10252–57. http://dx.doi.org/10.1016/j.ifacol.2023.10.907.
Der volle Inhalt der QuelleFudenberg, Drew, Giacomo Lanzani und Philipp Strack. „Pathwise concentration bounds for Bayesian beliefs“. Theoretical Economics 18, Nr. 4 (2023): 1585–622. http://dx.doi.org/10.3982/te5206.
Der volle Inhalt der QuelleLu, Shuai, Peter Mathé und Sergiy Pereverzyev. „Analysis of regularized Nyström subsampling for regression functions of low smoothness“. Analysis and Applications 17, Nr. 06 (23.09.2019): 931–46. http://dx.doi.org/10.1142/s0219530519500039.
Der volle Inhalt der QuelleWang, Ke, und Hong Yue. „Sampling Time Design with Misspecified Cramer-Rao Bounds under Input Uncertainty“. IFAC-PapersOnLine 58, Nr. 14 (2024): 622–27. http://dx.doi.org/10.1016/j.ifacol.2024.08.406.
Der volle Inhalt der QuelleFortunati, Stefano, Fulvio Gini, Maria S. Greco und Christ D. Richmond. „Performance Bounds for Parameter Estimation under Misspecified Models: Fundamental Findings and Applications“. IEEE Signal Processing Magazine 34, Nr. 6 (November 2017): 142–57. http://dx.doi.org/10.1109/msp.2017.2738017.
Der volle Inhalt der QuelleSalmon, Mark. „EDITOR'S INTRODUCTION“. Macroeconomic Dynamics 6, Nr. 1 (Februar 2002): 1–4. http://dx.doi.org/10.1017/s1365100502027013.
Der volle Inhalt der QuelleCheng, Xu, Zhipeng Liao und Ruoyao Shi. „On uniform asymptotic risk of averaging GMM estimators“. Quantitative Economics 10, Nr. 3 (2019): 931–79. http://dx.doi.org/10.3982/qe711.
Der volle Inhalt der QuelleBanerjee, Imon, Vinayak A. Rao und Harsha Honnappa. „PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models“. Entropy 23, Nr. 3 (06.03.2021): 313. http://dx.doi.org/10.3390/e23030313.
Der volle Inhalt der QuelleOrtega, Lorenzo, Corentin Lubeigt, Jordi Vilà-Valls, und Eric Chaumette. „On GNSS Synchronization Performance Degradation under Interference Scenarios: Bias and Misspecified Cramér-Rao Bounds“. NAVIGATION: Journal of the Institute of Navigation 70, Nr. 4 (2023): navi.606. http://dx.doi.org/10.33012/navi.606.
Der volle Inhalt der QuelleDissertationen zum Thema "Misspecified bounds"
McPhee, Hamish. „Algorithme d'échelle de temps autonome et robuste pour un essaim de nanosatellites“. Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP094.
Der volle Inhalt der QuelleA new robust time scale algorithm, the Autonomous Time scale using the Student's T-distribution (ATST), has been proposed and validated using simulated clock data. Designed for use in a nanosatellite swarm, ATST addresses phase jumps, frequency jumps, anomalous measurement noise, and missing data by making a weighted average of the residuals contained in the Basic Time Scale Equation (BTSE). The weights come from an estimator that assumes the BTSE residuals are modeled by a Student's t-distribution.Despite not detecting anomalies explicitly, the ATST algorithm performs similarly to a version of the AT1 time scale that detects anomalies perfectly in simulated data. However, ATST is best for homogeneous clock types, requires a high number of clocks, adds computational complexity, and cannot necessarily differentiate anomaly types. Despite these identified limitations the robustness achieved is a promising contribution to the field of time scale algorithms.The implementation of ATST includes a method that maintains phase and frequency continuity when clocks are removed or reintroduced into the ensemble by resetting appropriate clock weights to zero. A Least Squares (LS) estimator is also presented to pre-process inter-satellite measurements, reducing noise and estimating missing data. The LS estimator is also compatible with anomaly detection which removes anomalous inter-satellite measurements because it can replace the removed measurements with their estimates.The thesis also explores optimal estimation of parameters of two heavy-tailed distributions: the Student's t and Bimodal Gaussian mixture. The Misspecified Cramér Rao Bound (MCRB) confirms that assuming heavy-tailed distributions handles outliers better compared to assuming a Gaussian distribution. We also observe that at least 25 clocks are required for asymptotic efficiency when estimating the mean of the clock residuals. The methodology also aids in analyzing other anomaly types fitting different distributions.Future research proposals include addressing ATST's limitations with diverse clock types, mitigating performance loss with fewer clocks, and exploring robust time scale generation using machine learning to weight BTSE residuals. Transient anomalies can be targeted using machine learning or even a similar method of robust estimation of clock frequencies over a window of past data. This is interesting to research and compare to the ATST algorithm that is instead proposed for instantaneous anomalies
„Bayesian Framework for Sparse Vector Recovery and Parameter Bounds with Application to Compressive Sensing“. Master's thesis, 2019. http://hdl.handle.net/2286/R.I.55639.
Der volle Inhalt der QuelleDissertation/Thesis
Masters Thesis Computer Engineering 2019
Buchteile zum Thema "Misspecified bounds"
Fortunati, Stefano, Fulvio Gini und Maria S. Greco. „Parameter bounds under misspecified models for adaptive radar detection“. In Academic Press Library in Signal Processing, Volume 7, 197–252. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-811887-0.00004-3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Misspecified bounds"
McPhee, Hamish, Jean-Yves Tourneret, David Valat, Jérôme Delporte, Yoan Grégoire und Philippe Paimblanc. „Misspecified Cramér-Rao Bounds for Anomalous Clock Data in Satellite Constellations“. In 2024 32nd European Signal Processing Conference (EUSIPCO), 1222–26. IEEE, 2024. http://dx.doi.org/10.23919/eusipco63174.2024.10715422.
Der volle Inhalt der QuelleRichmond, Christ D., und Larry L. Horowitz. „Parameter bounds under misspecified models“. In 2013 Asilomar Conference on Signals, Systems and Computers. IEEE, 2013. http://dx.doi.org/10.1109/acssc.2013.6810254.
Der volle Inhalt der QuelleDiong, M. L., E. Chaumette und F. Vincent. „Generalized Barankin-type lower bounds for misspecified models“. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7953001.
Der volle Inhalt der QuelleRichmond, Christ D., und Abdulhakim Alhowaish. „On Misspecified Parameter Bounds with Application to Sparse Bayesian Learning“. In 2020 54th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf51394.2020.9443550.
Der volle Inhalt der QuelleFortunati, Stefano. „Misspecified Cramér-rao bounds for complex unconstrained and constrained parameters“. In 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017. http://dx.doi.org/10.23919/eusipco.2017.8081488.
Der volle Inhalt der QuelleParker, Peter A., und Christ D. Richmond. „Methods and bounds for waveform parameter estimation with a misspecified model“. In 2015 49th Asilomar Conference on Signals, Systems and Computers. IEEE, 2015. http://dx.doi.org/10.1109/acssc.2015.7421439.
Der volle Inhalt der QuelleRichmond, Christ D., und Prabahan Basu. „Bayesian framework and radar: On misspecified bounds and radar-communication cooperation“. In 2016 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2016. http://dx.doi.org/10.1109/ssp.2016.7551792.
Der volle Inhalt der QuelleTeichner, Ron, und Ron Meir. „Discrete-Time Kalman Filter Error Bounds in the Presence of Misspecified Measurements“. In 2023 European Control Conference (ECC). IEEE, 2023. http://dx.doi.org/10.23919/ecc57647.2023.10178341.
Der volle Inhalt der QuelleHabi, Hai Victor, Hagit Messer und Yoram Bresler. „Learned Generative Misspecified Lower Bound“. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023. http://dx.doi.org/10.1109/icassp49357.2023.10095336.
Der volle Inhalt der QuelleRosentha, Nadav E., und Joseph Tabrikian. „Asymptotically Tight Misspecified Bayesian Cramér-Rao Bound“. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024. http://dx.doi.org/10.1109/icassp48485.2024.10448099.
Der volle Inhalt der Quelle